



Standard Operating Procedure

Operational Qualification/ Performance Verification for HP 8453 UV-visible Spectroscopy Systems © Copyright Hewlett-Packard Company 1997

All rights reserved. Reproduction, adaption, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

#### HP Part No. G1115-90006

Second edition, 08/97

Printed in U.S.A.

#### Warranty

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties or merchantability and fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material.

#### Warning

For details of safety, see "Safety Information" in the *HP 8453 Reference Manual.* 

Hewlett-Packard GmbH Chemical Analysis Group Europe Hewlett-Packard-Strasse 8 D-76337 Waldbronn Germany

## **Standard Operating Procedure**

## Operational Qualification / Performance Verification for HP 8453 UV-visible Spectroscopy Systems

Effective 08.01.97

Revision 02.00

1 of 204

## **General Information**

This handbook is intended for use by the technical reader requiring operating procedures for operational qualification or performance verification (OQ/PV) of the HP 8453 UV-visible spectrophotometer, HP ChemStation software for UV-visible spectroscopy, and optional accessories.

This document describes the purpose of these procedures, and provides guidelines in the preparation, setup, and evaluation of OQ/PV tests and procedures. The electronic files which accompany this manual can be used to develop customized standard operating procedures, which may be specific to your laboratory environment and requirements.

The handbook lists the specifications of the instrument, as well as procedures for verifying instrument performance based on these specifications. These detailed procedures, intended for less experienced users, describe the handling requirements for various chemicals, cuvettes, flow cells, and consumables. Strict adherence to these procedures is required, in order to insure success in verifying instrument performance. This document includes part numbers and ordering information for supplies from Hewlett-Packard as well as other companies.

For information about installation of the system hardware, including the spectrophotometer, computer, and additional accessories, see the *Installing Your UV-visible Spectroscopy System* handbook. For detailed repair and maintenance information as well as instrument and accessory part numbers, see the *online help* in your HP ChemStation software or the HP 8453 Reference Manual.

General Information

### Fill-in Form 1

## Protocol Approval

Customer protocol approval

I agree that the OQ/PV procedures in this document are applicable to the equipment defined in the table of contents.

| Name | Signature | Date |
|------|-----------|------|
|      |           |      |
| Name | Signature | Date |

Hewiett-Packard protocol approval

I agree that the OQ/PV procedures, assembled by Hewlett-Packard Analytical Services are appropriate for the equipment defined in the table of contents.

| Name | Signature | Date |
|------|-----------|------|
|      |           |      |
| Name | Signature | Date |



Effective 08.01.97

## **Installing the Electronic Version**

To install your own copy of the manual on your hard disk perform the following steps:

- 1 Insert the CD-ROM that comes with this document in your CD-ROM drive.
- 2 Use the Windows File Manager or Windows 95 Explorer to install Adobe<sup>®</sup> Acrobat Reader and optionally, a copy of the manual, by selecting the \oqpv\setup.exe program.
- 3 When the system restarts, new icons appear in your HP ChemStation program group. Selecting the HP 8453 OQ/PV Handbook opens the d:\oqpv\oqpvbook.pdf file in Adobe Acrobat Reader. From this program you can print this manual. In addition, Adobe Acrobat Reader provides full Windows-compliant copy-and-paste capability.

General Information

## **Exceptional Conditions**

Any exceptional conditions encountered during the administration of this protocol will be documented at the time of occurrence and reviewed by Hewlett-Packard personnel. Exceptional conditions will be investigated and the appropriate course of action determined, for example, repairs will be completed if instrument failure is covered contractually.

#### Fill-in Form 2

## Document Revision History

| Revision | _       | <b>.</b> . | First    | Second   | Final    |  |
|----------|---------|------------|----------|----------|----------|--|
| Number   | Changes | Date       | Approval | Approvai | Approval |  |



Effective 08.01.97

**General Information** 

Fill-in Form 3

## System Test Laboratory Location

The equipment for which the OQ/PV procedures in this document are performed can be found in the location specified below as of the date this protocol was performed.

Room

Date

Building #

**Company Name** 

Location

Department

Date this OQ/PV was last performed

Verified by (signature)

6 of 204

Use Fill-in Form 4 after you have completed all tests for the operational qualification of the HP 8453 spectroscopy system.

#### Fill-in Form 4

### **Certification of Completion of Operational Qualification**

The protocol documented in the following pages, performed on the given date, determined the operational suitability for the equipment as named.

### Hewlett-Packard HP 8453 spectroscopy system

| Instrument Nar | ne              |                                 |      |
|----------------|-----------------|---------------------------------|------|
| Initial        | Requalification | Yes                             | No   |
| Certification? |                 | Sticker attached to instrument? |      |
| Name           |                 | Signature                       | Date |
| Engineer Analy | rtical Services |                                 |      |
| Name           |                 | Signature                       | Date |
| Laboratory Sup | ervisor/Manager |                                 |      |

| 1 |  |
|---|--|
|   |  |

Effective 08.01.97

Revision 02.00

7 of 204

General Information

## In This Book

Chapter 1 describes the purpose of operational qualification and performance verification testing, the prerequisites for testing, an overview of the individual tests, and a list of the parts and materials required.

Chapter 2 describes the handling and preparation of tubing, chemicals, flow cells, standards, and software, and completion of the performance verification procedure.

Chapter 3 contains the standard operating procedure for checking and setting the pump time for maximum acceptable cross contamination when using a sipper system or sipper/autosampler system.

Chapter 4 contains the SOP for testing and optimizing the alignment of each position of the multicell transport.

Chapter 5 contains the SOP for checking the temperature accuracy of the Peltier temperature-controlled cell holder using an external temperature measuring device.

Chapter 6 describes verification and revalidation of software components.

Chapter 7 describes verification and revalidation of the different online sampling systems for dissolution testing.

Chapter 8 helps you locate and identify parts and their part numbers.

## Contents

### 1 Introduction

Purpose 15 Overview of the Procedures 18 Acceptance Criteria 25 OQ/PV Certification 27

## 2 Spectrophotometer Performance Verification

# Using the Performance Verification Procedure in the HP 8453 UV-Visible Software 32

Preparing the Flow Cells and Tubings 33 Preparing for the Tests 35 Performance Verification of the HP 8453 Spectrophotometer 38

## Performance Test Procedures 42

Potassium Dichromate Solution Test 43 Holmium Oxide Solution Test 46 Sodium Nitrite Stray Light Test 49 Sodium Iodide Stray Light Test 52 Potassium Chloride Stray Light Test 55 Toluene Resolution Test 58 Before you Store the Flow Cell and Tubings 60 Spectrophotometer OQ/PV Attachment Forms 61

## **3** Sipper/Autosampler Performance Verification

Sipper/Autosampler Pump Time Test 65 Sipper/Autosampler Attachment Forms 68 Contents

## **4** Multicell Transport Performance Verification

Multicell Transport Reproducibility Test 73 Multicell Transport OQ/PV Attachment Forms 76

## 5 Peltier Temperature- Controlled Cell Holder Performance Verification

Temperature-accuracy Test of Peltier Temperature-Controlled Cell Holder 81

Peltier Controlled Cell Holder OQ/PV Attachment Forms 84

## 6 Software Performance Verification

Revalidation of General Scanning Software for HP ChemStation 89 General Scanning Software OQ/PV Attachment Forms 94 Revalidation of Advanced Software for HP ChemStation 96 Advanced Software OQ/PV Attachment Forms 100 Revalidation of Biochemical Analysis Software for HP ChemStation 101 Biochemical Analysis Software for

Biochemical Analysis Software OQ/PV Attachment Forms 105

## 7 Dissolution Testing System Performance Verification

## Performance Verification of Offline Sampling Systems for Dissolution Testing 110

Performance Verification of Offline Sampling Systems 111 Preparing the Offline Sampling Systems for the Test 113 Contents

Performance Verification Procedures for Offline Sampling Systems 115

Offline Sampling Systems OQ/PV Attachment Forms 118

## Performance Verification of Online Sampling Systems for Dissolution Testing 120

Performance Verification of Multicell Transport Sampling System 121

Preparing the Multicell Transport Sampling System for the Test 123

Performance Verification Procedures for Multicell Transport Sampling System 128

Multicell Transport Sampling System OQ/PV Attachment Forms 132

Performance Verification of Valve Sampling System 137 Preparing the Valve Sampling System for the Test 139 Performance Verification Procedures for Valve Sampling System 143

Valve Sampling System OQ/PV Attachment Forms 147 Performance Verification of Multibath Sampling System 152 Preparing the Multicell Transport of the Multibath Sampling System for the Test 154

Performance Verification Procedures for Multibath Sampling System 159

Multibath Sampling System OQ/PV

Attachment Forms—Bath 1 164

Multibath Sampling System OQ/PV

Attachment Forms—Bath 2 169

Multibath Sampling System OQ/PV

Attachment Forms—Bath 3 174

Multibath Sampling System OQ/PV Attachment Forms—Bath 4 179

## Performance Verification of the Dissolution Testing Software 184

Dissolution Testing UV-Visible ChemStation Software Revalidation 185 Dissolution Testing Software OQ/PV Attachment Forms 188

## Performance Verification of the DDE Interface for Bath Drivers 190

Revalidation of the DDE Interface for Dissolution Testing Software 191 Revalidation of the DDE Interface for Dissolution Testing Software OQ/PV Attachment Forms 196

## 8 Parts and Materials

Parts List 201 Standards from External Sources 202 Names and Chemical Formulae of Hewlett-Packard Liquid Standards 203





Ŷ

1

This chapter describes the purpose of operational qualification and performance verification testing, the prerequisites for testing, an overview o the individual tests, and a list of the parts and materials required. Introduction Purpose

## Purpose

Good laboratory practice (GLP) and good manufacturing practice (GMP) require that all laboratory instrumentation shall be adequately inspected, cleaned, and maintained. Instruments used for the generation, measurement, and evaluation of data shall be adequately tested, calibrated, and standardized. This protocol defines the methods and documentation that can be used to evaluate the HP 8453 UV-visible spectroscopy system for operation in accordance with the intended use and published specifications. Successful completion of this protocol will verify that the HP 8453 UV-visible spectroscopy system is performing to published specifications.

### Scope

This document describes the operational qualification and performance verification (OQ/PV) procedure for the HP 8453 UV-visible spectroscopy system. This procedure applies to the following:

- HP 8453 spectrophotometer
- Sipper system including peristaltic pump and tubing
- Autosampler system including peristaltic pump and tubing
- Multicell transport
- Peltier temperature-controlled cell holder
- General purpose software for HP ChemStation
- Advanced software for HP ChemStation
- Biochemical software for HP ChemStation
- Dissolution testing software for HP ChemStation
- Dissolution testing hardware

#### NOTE

This procedure does not apply to any spectroscopy system or module that has been altered or modified such that it no longer meets Hewlett-Packard design specifications. Introduction Purpose

## **Prerequisites**

It is recommended that you do routine user maintenance immediately prior to running the OQ/PV procedure. User maintenance includes the following steps:

- For the HP 8453 spectrophotometer: clean the source lens and the spectrograph lens according to the procedures given in the *Reference Handbook* and the online help.
- To ensure a stable system, the spectrophotometer lamp should be switched on for a minimum of 45 minutes. For more consistent results, a 2-hour warm-up period is recommended prior to beginning this procedure.
- For the sipper and autosampler: check the quality of your pump tubing and replace it if required.
- Adjust the multicell transport mechanically or store the optimum positions in the software using the multicell transport cell adjustment tool (89075-23800).
- For the Peltier temperature-controlled cell holder there is no special maintenance required.
- For the dissolution testing system: disconnect the spectrophotometer from the bath, remove probes from the bath, exchange all pump tubings and probe filters.

## **Frequency of Testing**

The OQ/PV procedure should be scheduled at least once each year, or after significant repair. However, you should determine the frequency of testing based on your laboratory's particular operating environment.

## **Maintenance/Calibration Contracts and Warranties**

A warranty statement is included in the *HP 8453 Reference Manual*. If a failure is encountered during the OQ/PV procedure, the instrument will be removed from use until the appropriate repair is made. After the repair is completed, the reason for repair and any applicable data generated to show the repair corrected the existing failure should be logged according to current laboratory procedures. The instruments will be serviced by trained HP service representatives.

Purpose

Simple maintenance can be performed by a trained analyst using the manuals or the online help system. Hewlett-Packard has trained service representatives who perform maintenance or repairs on an as-called basis.

Spare parts are listed in the individual manuals. Some parts are kept with the instrument and some are exchanged by Hewlett-Packard service representatives.

## **Declaration of Change Control**

Change control procedures are in place in order to maintain the validation process. Any changes to the instrument hardware, or computer hardware or software must be clearly specified. A control system will determine the degree of revalidation required according to the extent of the changes. All details of the changes are thoroughly recorded and documented, together with details of completed tests and their results.

## **Records of OQ/PV**

For the majority of the tests of the HP 8453 spectrophotometer, test results are printed automatically in a report on completion of the procedure.

If required, fill out the appropriate attachment form for each test.

Introduction Overview of the Procedures

## **Overview of the Procedures**

The OQ/PV procedures use a combination of internal test functions and analytical methods (using certified samples) to evaluate instrument performance, and to verify the instrument is operating according to performance specifications agreed upon by you and Hewlett-Packard. The HP ChemStation software for UV-visible spectroscopy provides software for semiautomated OQ/PV of the HP 8453 spectrophotometer.

You can select to have this procedure performed by qualified staff within your organization, by Hewlett-Packard trained service engineers, or by an independent service provider. Typically, the complete OQ/PV procedure can be completed within 3 hours.

### Tests

The OQ/PV procedure comprises the tests shown in Table 1.

| Table 1           | OQ/PV Tests                | ·<br>•                           |               |
|-------------------|----------------------------|----------------------------------|---------------|
| Instrument        | Type of Test               | Alternatives / Test Medium       | Time Required |
| Spectrophotometer | Photometric Accuracy Test  | NIST 930e solid standard         | 2 minutes     |
|                   |                            | Potassium dichromate solution    | 5 minutes     |
|                   | Wavelength Accuracy Test   | NIST 2034 holmium oxide standard | 2 minutes     |
|                   |                            | Holmium oxide solution           | 5 minutes     |
|                   | Stray Light Test           | Sodium nitrite solution          | 5 minutes     |
|                   |                            | Sodium iodide solution           | 5 minutes     |
|                   |                            | Potassium chloride solution      | 5 minutes     |
|                   | Resolution Test            | Toluene-hexane solution          | 5 minutes     |
|                   | Baseline Flatness Test     | Through software                 | 1 minutes     |
|                   | Photometric noise test     | Through software                 | 2 minutes     |
|                   | Photometric stability test | Through software                 | 60 minutes    |

### **Overview of the Procedures**

### Table 1 OQ/PV Tests, continued

and the second second second

| Instrument                                                                    | Type of Test                                                                                                             | Alternatives / Test Medium                          | Time Required |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|
| Peltier Temperature<br>Controlled Cell Holder                                 | Temperature accuracy                                                                                                     | QuaT 100 temperature measuring device               | 15 minutes    |
| Sipper System                                                                 | Flow test                                                                                                                | Through software/caffeine sample                    | 5 minutes     |
| Sampler system                                                                | Flow test                                                                                                                | Through software/caffeine sample                    | 5 minutes     |
| Multicell transport                                                           | Position reproducibility                                                                                                 | Through software with the multicell adjustment tool | 5 minutes     |
| General purpose software<br>revalidation                                      | Uses methods and data from the CD-ROM and a printout of results in this document                                         | Through software                                    | 5 minutes     |
| Advanced UV-Visible<br>ChemStation Software<br>Revalidation                   | Uses methods and data from the CD-ROM and a printout of results in this document                                         | Through software                                    | 5 minutes     |
| Biochemical analysis<br>software revalidation                                 | Uses methods and date from the CD-ROM and a printout of results in this document                                         | Through software                                    | 5 minutes     |
| Single-beth dissolution<br>testing system based on<br>the multicell transport | Spectrophotometer tests, multicell transport<br>test, flow test, flow rate test,<br>cross-contamination test             | Through software/caffeine sample                    | 210 minutes   |
| Single-bath dissolution<br>testing system based on<br>the 8-port valve        | Spectrophotometer tests, valvet test, flow test, flow rate test, cross-contamination test                                | Through software/caffeine sample                    | 210 minutes   |
| Dissolution testing<br>multibath sampling system                              | Spectrophotometer tests, multicell transport<br>test, valve test, flow test, flow rate test,<br>cross-contamination test | Through software/caffeine sample                    | 225 minutes   |
| Dissolution testing<br>software                                               | Uses methods and data from the CD-ROM and a printout of results in this document                                         | Through software                                    | 5 minutes     |
| DDE Interface                                                                 | Uses methods and data from the CD-ROM                                                                                    | Through software                                    | 5 minutes     |

## Spectrophotometer

All of the following tests for the HP 8453 spectrophotometer are supported by a procedure in the HP ChemStation software.

#### **Overview of the Procedures**

#### **Photometric Accuracy Test**

The photometric accuracy test can be done two alternate ways, using

- the SRM 930e neutral density glass filter from NIST, or
- the potassium dichromate solution obtained from Hewlett-Packard sealed in an ampule, or a solution made up as specified by the European Pharmacopoeia (EP). A flow cell is used with PTFE tubing and a syringe to bring the solution into the light path.

Depending on the availability of the standards and the wavelength range of interest, one or the other or both ways can be used. The SRM 930e filter at 1 AU, uses wavelengths at 440.0, 465.0, 546.1, 590.0, and 635.0 nm, whereas the potassium dichromate standard uses wavelengths at 235, 257, 313, 350 nm.

#### Wavelength Accuracy Test

The wavelength accuracy test can be done two alternate ways, using

- the SRM 2034 holmium oxide standard from NIST which is a sealed cuvette containing holmium oxide in perchloric acid, or
- holmium oxide solution can be obtained from Hewlett-Packard sealed in an ampoule, or a solution can be made up as specified by the European Pharmacopoeia (EP). A flow cell is used with PTFE tubing and a syringe to bring the solution into the light path.

Depending on the availability of the standards one or the other ways can be used.

#### Stray Light Test

Stray light testing can be done using any one or any combination of solutions of:

- Sodium nitrite solution (ASTM)
- Sodium iodide solution (ASTM)
- Potassium chloride solution (EP)

These standards can be obtained from Hewlett-Packard sealed in an ampoule, or a solution can be made up as specified by the European

#### **Overview of the Procedures**

Pharmacopoeia (EP) or ASTM. A flow cell is used with teflon tubing and a syringe to bring the solution into the light path.

#### **Resolution Test**

The resolution test according to the European Pharmacopoeia is done using:

• Toluene-hexane solution

This solution obtained from Hewlett-Packard sealed in an ampoule, or a solution made up as specified by the European Pharmacopoeia (EP). A flow cell is used with PTFE tubing and a syringe to bring the solution into the light path.

#### **Baseline Flatness Test**

This test utilizes software only. It takes a scan without a cell in the cell holder and checks that the noise level of the complete spectrum (190–1100 nm) is lower than 0.001 AU rms.

#### Photometric Noise Test

This test utilizes software only. It takes 60 consecutive scans without a cell in the cell holder and checks that the noise level of all scans at 500 nm is lower than 0.0002 AU rms.

#### **Photometric Stability Test**

This test utilizes software only. It scans without a cell in the cell holder every 60 s, over 1 hour, after minimum warm-up time of 1 hour, and checks that the noise level of all scans at 340 nm is lower than 0.001 AU/h.

### **Peltier Temperature-Controlled Cell Holder Test**

#### **Temperature Accuracy**

The temperature accuracy test uses a calibrated, external measuring device to verify temperature accuracy of the cell holder. An additional tool is required and can be obtained from Hewlett-Packard. Introduction Overview of the Procedures

## Sipper/Autosampler Pump Time Test

#### Flow Test

The flow test allows to check that the sampling system is operating correctly and indicates the presence of flow, restrictions of air leaks, low flow rates or high dead volumes which could lead to errors in measurement. This test uses a test solution obtained from Hewlett-Packard, or a solution made up according to the description in the procedure.

## **Multicell Transport Reproducibility Test**

This test uses the diagnostic part of the HP ChemStation software to check the reproducibility of the cell positions of the multicell transport. The cell positions are checked initially, then the multicell transport is moved to random positions for 5 minutes. Afterwards a second check is made and compared with the initial results to check the positioning reproducibility. The required test tool can be obtained from Hewlett-Packard

## **General Purpose Software Revalidation**

Revalidation uses methods and data from the support subdirectory on the CD-ROM and a printout of results in this document to check the integrity of the file storage, calculation and printout routines.

## **Advanced Software Revalidation**

Revalidation uses methods and data from the support subdirectory on the CD-ROM and a printout of results in this document to check the integrity of the file storage, calculation and printout routines.

## **Biochemical Analysis Software Revalidation**

Revalidation uses methods and data from the support subdirectory on the CD-ROM and a printout of results in this document to check the integrity of the file storage, calculation and printout routines.

**Overview of the Procedures** 

## **Dissolution Testing Software Revalidation**

Revalidation uses methods and data from the support subdirectory on the CD-ROM and a printout of results in this document to check the integrity of the file storage, calculation and printout routines.

## Test for Single-bath Dissolution Testing System based on a Multicell-transport Sampling System

### Flow Test (Peristaltic Pump 8VS / Multicell Transport)

The flow test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of flow, restrictions of air leaks, low flow rates or high dead volumes which could lead to errors in measurement. This test uses a test solution obtained from Hewlett-Packard, or a solution made up according to the description in the procedure.

### Flow Rate Test

The flow rate test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of flow, restrictions of air leaks, low flow rates or high dead volumes which could lead to errors in measurement. This test uses distilled water and a beaker to measure the amount of water pumped through each channel.

### **Cross-Contamination Test**

The cross-contamination test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of carry over from successive pumping events. This test uses a test solution obtained from Hewlett-Packard, or a solution made up according to the description in the procedure.

# Test for Single-bath Dissolution Testing System based on a Valve Sampling System

### Flow Test (8-Port Valve / Sipper)

The flow test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of flow, restrictions of air leaks, low flow rates or high dead volumes which could lead to errors in

#### Introduction Overview of the Procedures

measurement. This test uses a test solution obtained from Hewlett-Packe or a solution made up according to the description in the procedure.

#### Flow Rate Test

The flow rate test allows to check that each channel of the sampling syste is operating correctly, and indicates the presence of flow, restrictions of a leaks, low flow rates or high dead volumes which could lead to errors in measurement. This test uses distilled water and a beaker to measure the amount of water pumped through each channel.

#### **Cross-Contamination Test**

The cross-contamination test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of carr, over from successive pumping events. This test uses a test solution obtain from Hewlett-Packard, or a solution made up according to the description the procedure.

### Test for Multibath Dissolution Testing System

#### Flow Rate Test for each Bath

The flow rate test allows to check that each channel of the sampling syster is operating correctly, and indicates the presence of flow, restrictions of air leaks, low flow rates or high dead volumes which could lead to errors in measurement. This test uses distilled water and a beaker to measure the amount of water pumped through each channel.

#### **Cross-Contamination Test for each Bath**

The cross-contamination test allows to check that each channel of the sampling system is operating correctly, and indicates the presence of carry over from successive pumping events. This test uses a test solution obtaine from Hewlett-Packard, or a solution made up according to the description i the procedure.

Introduction Acceptance Criteria

## Acceptance Criteria

Test limits and acceptance criteria are provided in the software and in this document.

### NOTE

Note that the limits specified in this document and in the HP ChemStation online help system are for new instruments and for instruments which have been maintained and repaired with the intention of ensuring performance according to Hewlett-Packard specifications. Instruments in routine use over longer periods may not continue to meet all Hewlett-Packard specifications. Therefore, acceptance criteria may be assigned according to analytical requirements, and agreed to by yourself and your local Hewlett-Packard representative.

Performance specifications are measured after a minimum of 45 minutes from cold start or from lamp turn-on, with no cell or filter unless specified. Cold start in this context means that the spectrophotometer had been stored for some hours at room temperature.

NOTE

For detailed procedures to verify the performance of the instrument, see Chapter 2 "Spectrophotometer Performance Verification" through Chapter 5 "Peltier Temperature- Controlled Cell Holder Performance Verification". For sources of standards and parts required, see Chapter 8 "Parts and Materials".

## Introduction Acceptance Criteria

| Table 2                    | Limits of Acce  | otance Criteria for the HP 8453 Spectrophotometer                                                                                                                                                                                                                                                                                           |
|----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                       | Specification   | Comments                                                                                                                                                                                                                                                                                                                                    |
| Resolution                 | > 1.6           | Ratio of absorbance of peak/valley around 269 and 266 nm is greater than 1.5, blank scan on hexane; a 9-point spline function is used; 0.5 s integration time; (EP <sup>*</sup> method)                                                                                                                                                     |
| Stray light                | < 1.0%          | At 200 nm, solution of 1.2% KCI, blank scan on distilled water, 5 s integration time; (EP method)**                                                                                                                                                                                                                                         |
|                            | < 0.05%         | At 220 nm, solution of 10 g/l Nal, blank scan on distilled water, 5 s integration time; (ASTM method)                                                                                                                                                                                                                                       |
|                            | < 0.03%         | At 340 nm, solution of 50 g/l NaNO2, blank scan on distilled water, 5 s integration time; (ASTM method)                                                                                                                                                                                                                                     |
| Wavelength accuracy        | < ± 0.5 nm      | NIST 2034 standard, using transmittance peak minima; wavelength in NIST certificate are interpolated for 1.5 nm bandwidth from the values given for 2 nm and 1 nm bandwidth; uncertainty of standard from NIST certificate (typically $\pm 0.1$ nm) is added to the specification; 99-point spline function is used; 0.5 s integration time |
| Wavelength reproducibility | < ± 0.02 nm     | Ten consecutive scans with NIST 2034 standard; 0.5 s integration time                                                                                                                                                                                                                                                                       |
| Photometric accuracy       | ± 0.005 AU      | NIST 930e standard at 1 AU, at 440.0, 465.0, 546.1, 590.0, and 635.0 nm, the expanded uncertainty from NIST certificate is added to the specification; 0.5 s integration time                                                                                                                                                               |
| Photometric accuracy       | ± 0.01 AU       | Potassium dichromate in 0.01 N H2SO4 at 235, 257, 313, 350 nm; blank scan on 0.01 N H2SO4; 0.5 s integration time; blank scan on solvent; (EP method)                                                                                                                                                                                       |
| Photometric noise          | < 0.0002 AÙ rms | Sixty consecutive scans on air with 0.5 s integration time at 0 AU, 500 nm;<br>11-point moving average: using equation: Noise(rms)=SQRT((SUM(X-x)^2)/n)<br>where x are measured values, X is a 11-point moving average, n is the number of<br>points                                                                                        |
| Photometric stability      | < 0.001 AU/h    | Scan on air at 0 AU, 340 nm, after 1-hour warm up, measured over 1 hour, every 60 s, integration time 5 s; difference between maximum and minimum values are compared to specification; at constant ambient temperature                                                                                                                     |
| Baseline flatness          | < 0.001 AU rms  | Scan on air at 0 AU, 190 - 1100 nm, 0.5 s integration time                                                                                                                                                                                                                                                                                  |

\* EP stands for European Pharmacopoeia

\*\* Apparent absorbance is strongly affected by dissolved oxygen. According to ASTM, bubble pure nitrogen through liquid for several minutes immediately before use. Use only recently distilled water (not demineralized water).

26 of 204

Effective 08.01.97

Introduction OQ/PV Certification

## **OQ/PV** Certification

This document provides a protocol to verify and record configuration and operation of analytical laboratory equipment from Hewlett-Packard. It has been prepared from best practices of Hewlett-Packard customers and has been found to be of use to them in satisfying the configuration and operational verification and recording requirements of various laboratory certification programs.

NOTE

Certification depends upon many factors and use of this protocol alone does not assure certification and Hewlett-Packard makes no promises or representations as to its sufficiency for any specific certification program. Introduction OQ/PV Certification 81. B. B. B. B.

and the state of the second state of the

The second second

 $\mathcal{F}_{\mathbf{r}_{i}}^{\mathbf{r}_{i}}$ 

読みてん





# **Spectrophotometer Performance Verification**

2

# Spectrophotometer Performance Verification

This chapter describes the handling and preparation of tubing, chemicals, flow cells, standards, and software, and completion of the performance verification procedure. The chapter has two sections:

- "Using the Performance Verification Procedure in the HP 8453 UV-Visible Software" on page 32, and
- "Performance Test Procedures" on page 42.
Effective 08.01.97

# Using the Performance Verification Procedure in the HP 8453 UV-Visible Software

This section guides you through the procedure to prepare flow cell, tubing, and standards and to configure the software for a performance verification. The performance verification procedure describes how to use the general purpose software and the spectrophotometer. Additional information is required to handle the standards and chemicals, see "Performance Test Procedures" on page 42. Spectrophotometer Performance Verification Preparing the Flow Cells and Tubings

# **Preparing the Flow Cells and Tubings**

This chapter is only required if you are using the liquid holmium oxide, potassium dichromate, stray light and resolution standards in combination with the OQ/PV hardware kit from Hewlett-Packard.

# Contents of the OQ/PV Hardware Kit

The parts included in the OQ/PV hardware kit are shown in Table 3. There are two sets of flow cells, tubings, and syringes given, one for the organic phase (toluene-in-hexane test), and one for the water phase. In addition, there are two tools provided, one for verification of the multicell transport and one to support measuring temperatures in the Peltier temperature-controlled cell holder with an external temperature measuring device.

|          | •              |  |
|----------|----------------|--|
| Quantity | Description    |  |
| 2        | Flow cell, 3.5 |  |
| 1        | Tubing, 40-cn  |  |
| 1        | Tubing, 40-cn  |  |
| 4        |                |  |

Table 3

## Contents of OQ/PV Hardware Kit for UV-Visible (5063-6523)

| Quantity | Description                                                                     |
|----------|---------------------------------------------------------------------------------|
| 2        | Flow cell, 3.5 × 11-mm aperture, 360-µl volume                                  |
| 1        | Tubing, 40-cm long, one black fitting, one orange fitting                       |
| 1        | Tubing, 40-cm long, one black fitting, one white fitting                        |
| 1        | Tubing, 40-cm long, one black fitting with orange ring                          |
| 1        | Tubing, 40-cm long, one black fitting with white ring                           |
| 2        | Luer lock to screw fitting adapter                                              |
| 2        | Syringe, 20 ml                                                                  |
| 1        | Cell passivating and cleaning fluid, 1000 ml                                    |
| 1        | Multicell transport adjustment tool                                             |
| 1        | Temperature sensor support                                                      |
| 1        | Performance verification procedures handbook (including 3.5-inch flexible disk) |

Spectrophotometer Performance Verification Preparing the Flow Cells and Tubings

# Assembling the Tubings

### WARNING

To avoid contamination the flow cell and tubing for the organic pha test must never be used for the water phase test. Similarly, the flov cell and tubing for the water phase test must never be used for the organic phase test.

- 1 Use the set with the orange fittings for the organic phase (Orange = Organi phase) and the set with the white fittings for the water phase (White = Wate phase).
- 2 Use the long tubing with different fittings at either end and connect the blac hand-tight fitting to the outlet of the flow cell. The outlet of the flow cell is opposite of the inlet which is marked with an arrow on the quartz window.
- 8 Connect the other end of this tubing to the Luer-lock adapter and fix the adapter to the syringe.
- 4 Use the short tubing with one open end and connect the fitting to the inlet o the flow cell. (The inlet is marked with an arrow on the quartz window.)
- 5 Check that the quartz windows of the flow cell are clean. If not, wipe the optical surfaces with a lint free optical tissue.
- 6 Place the flow cell in the cell holder of the spectrophotometer.

After you have assembled the tubings flow cells and syringes, leave all parts together to avoid mixing the parts up.

Spectrophotometer Performance Verification **Preparing for the Tests** 

# **Preparing for the Tests**

The parts included in the verification standards kits are shown in Table 4 and Table 5.

Table 4

#### Contents of the OQ/PV Standards (1) Kit for UV-Visible (5063-6503)

| Quantity | Description                   |  |
|----------|-------------------------------|--|
| 2        | 0.01 N sulfuric acid          |  |
| 2        | Potassium dichromate solution |  |
| 1        | Sodium nitrite solution       |  |
| 1        | Sodium iodide solution        |  |
| 1        | Potassium chloride solution   |  |
| 2        | Нехапе                        |  |
| 1        | Toluene solution              |  |

**Table 5** 

## Contents of the OO/PV Standards (2) Kit for UV-Visible (5063-6521)

| Quantity | Description            |  |
|----------|------------------------|--|
| 1        | 10% perchloric acid    |  |
| 1        | Holmium oxide solution |  |

1 To avoid spill of chemicals while drawing sample from an open ampule use a beaker which is small enough to hold an ampule in upright position. Position this beaker in reach of the inlet tubing of the flow cell.

2 Get a waste container with 500-ml volume.

**3** Get a beaker with approximately 250-ml of distilled water, HPLC grade.

Spectrophotometer Performance Verification Preparing for the Tests

4 Position the ampules on your lab bench in the sequence how they will be us during the verification procedure:

sulfuric acid, potassium dichromate solution, perchloric acid, holmium oxide solution, sodium nitrite solution, sodium iodide solution, potassium chloride solution, hexane, toluene solution.

# **Cleaning Your Flow Cell and Tubings**

Apply the following steps every time before you do a verification to make sure your flow cell for the water phase is clean and does not trap any air bubbles.

#### NOTE

This procedure applies only for the flow cell and tubings used for the water phase. Do not use it for the flow cell and tubings which are reserved for the hexane-toluene test. There is no cleaning procedure necessary for these floc cell and tubings.

Draw 50 ml of cell passivating and cleaning fluid through flow cell.

- 1 Prepare minimum 50 ml a solution of 5 % cell passivating and cleaning fluid (part number 5062-8529) in water.
- 2 Place the inlet tubing into the beaker with the 5 % cell passivating and cleanin fluid and use the syringe to slowly draw the 50 ml of cell passivating and cleaning fluid through the flow cell.

#### NOTE

You may observe a high amount of air coming through the flow cell, because the solution contains a detergent.

Spectrophotometer Performance Verification **Preparing for the Tests** 

Empty the syringe.

- 8 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing which you disconnected at the same level as the inlet tubing to avoid emptying of the tubing.
- 4 Empty the syringe into the waste container and re-connect the syringe to the Luer-lock adapter at the tubing.
- 5 Repeat steps 2, 3 and 4 until you have drawn the 50 ml of cell passivating and cleaning fluid through the flow cell and tubings. For extensive cleaning you may leave the fluid in the flow cell and tubings for an extended time period.

Draw 100 ml of water through flow cell.

- 6 Place the inlet tubing into a beaker with water and draw 100 ml of water through the flow cell.
- 7 Empty the syringe into the waste container and reconnect the syringe to the Luer-lock adapter at the tubing.
- 8 Repeat steps 6 and 7 until you have drawn the 100 ml of water through the flow cell and tubings.

Spectrophotometer Performance Verification
Performance Verification of the HP 8453 Spectrophotometer

# Performance Verification of the HP 8453 Spectrophotometer

#### Scope

The following procedure describes how to configure the verification procedure on the HP ChemStation for UV-visible spectroscopy.

# Frequency

Follow appropriate procedure:

- when you first install your HP 8453 UV-visible spectroscopy system,
- on a regular base at intervals of a minimum of 6 months,
- if you connect a different HP 8453 spectrophotometer to your HP ChemStation.

#### Instrumentation and software

This SOP applies to a HP 8453 UV-Visible spectroscopy system comprising HP 8453 spectrophotometer and general purpose software for the HP ChemStation.

# Requirements

Different tests have different environmental temperature conditions according to their original specifications by NIST and the various Pharmacopoeias. An environmental temperature range between 20–21 <sup>o</sup>C meets all specifications on which the test in this manual are based.

All liquid standards should be stored at environmental temperature for approximately 3 hours. The spectrophotometer should have been turned or for at least 45 minutes—preferably for 2 hours.

To perform configure and subsequently perform the verification procedure you may need the following standards from NIST or as liquid standards in ampules from Hewlett-Packard depending upon the test set that you select. Spectrophotometer Performance Verification

#### Performance Verification of the HP 8453 Spectrophotometer

For sources of standards, see "Standards from External Sources" on page 202.

- Photometric accuracy: NIST 930e or potassium dichromate solution
- Wavelength accuracy: NIST 2034 or built-in deuterium lamp emission lines test or holmium oxide solution
- Stray light: liquid potassium chloride, and sodium nitrite, and sodium iodide solutions
- Resolution: toluene solution
- Photometric noise: software only, no standards required
- Baseline flatness: software only, no standards required
- Photometric stability: software only, no standards required

Where appropriate the 930e NIST standards should have been calibrated or recalibrated within two years of use. Each standard should be clearly labeled with an identity number for positive identification.

## Procedure

- 1 If the spectrophotometer is not already turned on, switch the spectrophotometer on.
- 2 Start the HP ChemStation.
- **3** Select Verification and Diagnostics from the Mode menu or tool bar.
- 4 Select the Verification task in the graphical interface or by using the Task menu.
- **5** Under sampling system select Setup and make sure the path length is set to 1 cm. Choose OK to leave this dialog box.
- 6 Select the verification task Setup. A table showing the tests available is displayed.
- 7 Select the tests which you want to perform which are appropriate to your specific verification requirements and, where appropriate, enter information on the standards you will use using the Setup buttons.

Spectrophotometer Performance Verification
Performance Verification of the HP 8453 Spectrophotometer

Because the tests listed are of different complexity and duration it is recommended to do the following groups of tests together in two differe subsequent performance verification procedures:

all tests requiring external standards, e.g. wavelength accuracy, stray ligh potassium dichromate, and

1-hour photometric stability test, noise test, baseline flatness, absorbance stability test, deuterium lamp emission lines test.

- 8 When you have finished entering the data, select OK.
- **9** Check that the environmental temperature is between 20 and 21 °C and the liquid standards have been stored at this temperature for approximatel hours.
- 10 Make sure the spectrophotometer has been turned on for at least 45 minutes—preferably 2 hours.
- 11 Start the verification procedure by clicking on the Start button in the graphiinterface.
- 12 Follow exactly the instructions displayed on your monitor ensuring that the identity numbers of the standards you use match those displayed.

Use the appropriate test procedures for each individual standard on the following pages when applying the performance verification tests in the software:

**Photometric Accuracy Test** For the photometric accuracy test apply the procedures "Potassium Dichromate Solution Test" on page 43, or perfor the NIST 930e photometric accuracy test and follow the procedure as prompted by the software.

Wavelength Accuracy Test For the wavelength accuracy test apply the procedures "Holmium Oxide Solution Test" on page 46, perform the NIST 2034 holmium oxide test and follow the procedure as prompted by the software, or perform the deuterium lamp emission lines test and follow the procedure as prompted by the software. Do not forget to remove the flow cellor cuvette from the sample area for this test.

**Stray Light Tests** For the stray light tests apply the procedures "Sodiun Nitrite Stray Light Test" on page 49, "Sodium Iodide Stray Light Test" on page 52, and "Potassium Chloride Stray Light Test" on page 55.

Spectrophotometer Performance Verification

Performance Verification of the HP 8453 Spectrophotometer

**Resolution Test** For the resolution test apply the procedure "Toluene Resolution Test" on page 58.

#### **Noise Test**

**Baseline Flatness Test** 

**Absorbance Stability Test** These tests will run unattended. Follow the procedure as prompted by the software.

- 13 Print the report and sign it.
- 14 If you want to save the verification configuration as part of the instrument configuration, close the HP ChemStation software by selecting Exit from the File menu and make sure that the Save Configuration box has been selected.
- 15 To clean the flow cell and tubings, perform the procedure "Before you Store the Flow Cell and Tubings" on page 60.

#### Acceptance

The instrument passes the verification test if the report show pass for each individual test. Use Fill-in Form 5 on page 61 and Fill-in Form 6 on page 62 to document your results.

## Troubleshooting

If the spectrophotometer fails the verification test, refer to the standard operating procedures (SOPs) given on the support subdirectory on the CD-ROM which comes with your general purpose software. Run the instrument intensity spectrum diagnostic and, if it is low, replace the lamp according to the SOP "Changing the Lamp of the HP 8453" and clean the source lens according to the SOP "Cleaning the Source Lens of the HP 8453" and repeat the verification procedure.

If, after completing the above, the instrument does not pass the verification test, call Hewlett-Packard.

# **Performance Test Procedures**

This section lists the procedures to correctly handle the chemicals, flow ce and standards. For successful performance verification great care must be taken to follow exactly these procedures. Very small contaminations of standards, flow cell or the chemicals may result in failures of the procedur Advice about waste disposal are given to avoid chemical reactions when disposing the used chemicals, because the concentrations of the chemicals are relatively high.

|                                           | Spectrophotometer Performance Verification Potassium Dichromate Solution Test                                                                                                                                                                                                                                                    |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Potassium Dichromate Solution Test                                                                                                                                                                                                                                                                                               |
|                                           | Always use the flow cell and tubings for water phase (white fittings) for thi standard. Dispose the waste according to the local safety regulations.                                                                                                                                                                             |
| WARNING                                   | Wear eye glasses and gloves when breaking the ampules, because sma<br>glass particles may come off. Observe the warning symbols and labe<br>on the ampules and their packing material and act accordingly.                                                                                                                       |
| CAUTION                                   | Never remove the flow cell from the cell holder between blank measuremen<br>and sample measurement. This may cause errors which will give wrong<br>results.                                                                                                                                                                      |
|                                           | Doing the Blank Measurement                                                                                                                                                                                                                                                                                                      |
|                                           | At the prompt:                                                                                                                                                                                                                                                                                                                   |
|                                           | Verification Test 2: Photometric Accuracy                                                                                                                                                                                                                                                                                        |
|                                           | Rinse flow cell or cuvette with water and fill with 0.01N sulfuric acid for blank measurement.                                                                                                                                                                                                                                   |
|                                           | perform the following steps:                                                                                                                                                                                                                                                                                                     |
| Draw 15 ml of water<br>through flow cell. |                                                                                                                                                                                                                                                                                                                                  |
|                                           | 1 Place the inlet tubing in the beaker with water and use the syringe to draw 15 ml of water into the flow cell.                                                                                                                                                                                                                 |
| Empty the syringe.                        |                                                                                                                                                                                                                                                                                                                                  |
| · · · ·                                   | 2 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing you disconnected at the same level as the inlet tubing to avoid emptying the tubing and getting air in the flow cell. Empty the syringe in the waste container. |
|                                           |                                                                                                                                                                                                                                                                                                                                  |
|                                           |                                                                                                                                                                                                                                                                                                                                  |
|                                           | e de la construcción de la constru<br>La construcción de la construcción d                                                                                               |

Effective 08.01.97

and the second second

Revision 02.00

190

ullen Seine siche Control

Spectrophotometer Performance Verification Potassium Dichromate Solution Test

Re-connect the syringe.

- **3** Reconnect the syringe to the Luer-lock adapter at the tubing.
- 4 To observe that the flow cell is free from air you may remove it from the holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest poir while drawing water through it.

Break ampule with Sulfuric acid.

- 5 Select an ampule which contains the 0.01 N sulfuric acid. Make sure the up part of the ampule which will be broken off does not contain any liquid. 5 remove any liquid, turn the ampule upside down to fill it entirely and slow turn it back that the liquid in the upper part can flow down.
- 6 Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of Sulfuric acid through flow cell.

- 7 Remove the inlet tubing from the beaker with water and wipe off any liqui the end using a tissue.
- 8 Place the inlet tubing in the ampule and draw 9 ml of 0.01 N sulfuric acid us the syringe.
- **9** Make sure the flow cell is in the cell holder and the lever is locked (in dov position).

Start Blank measurement.

> 10 Before you start the blank measurement, make sure you are prepared to c the sample measurement immediately afterwards.

# **CAUTION** You have only 4 minutes to do the sample measurement after the blank. If 1 four minutes elapse you will be asked to repeat the blank measurement ag:

11 Select OK to start the blank measurement.

Spectrophotometer Performance Verification Potassium Dichromate Solution Test

# Doing the Potassium Dichromate Measurement

Break ampule with Potassium Dichromate solution.

1 Break the ampule which contains potassium dichromate in 0.01 N sulfuric acid and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of sample through flow cell.

- 2 Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoid contamination of the standard when you put it into the ampule.
- 8 Place the inlet tubing in the ampule and draw 9 ml of sample using the syringe.

Start measurement.

4 Start the measurement in the software, selecting the OK button.

Draw 3-5 ml of water through flow cell.

- 5 When the measurement has finished, remove the inlet tubing from the ampule and wipe any liquid off the end using a tissue.
- 6 Place the inlet tubing in the beaker with water and draw up 3–5 ml of water to flush the tubings.

Empty the syringe.

7 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing which you disconnected at the same level as the inlet tubing to avoid emptying of the tubing, i.e. air getting into the flow cell. Empty the syringe into the waste container.

Reconnect the syringe

8 Reconnect the syringe to the Luer-lock adapter at the tubing.

If this was the last performance test in your test sequence, clean the flow cell before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Holmium Oxide Solution Test

# **Holmium Oxide Solution Test**

Always use the flow cell and tubings for water phase (white fittings) for standard. Dispose the waste according to the local safety regulations.

### WARNING

Wear eye glasses and gloves when breaking the ampules, because siglass particles may come off. Observe the warning symbols and lal on the ampules and their packing material and act accordingly.

# CAUTION

Never remove the flow cell from the cell holder between blank measuren and sample measurement. This may cause errors which will give wrong results.

## **Doing the Blank Measurement**

At the prompt:

Verification Test 1: Wavelength Accuracy

Rinse flow cell or cuvette with water and fill with 10 % perchloric acid for blank measurement.

#### perform the following steps:

Draw 15ml of water through flow cell.

1 Place the inlet tubing in the beaker with water and use the syringe to drav 15 ml of water in the flow cell.

Empty the syringe.

2 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position i tubing you disconnected at the same level as the inlet tubing to avoid empty the tubing and getting air in the flow cell. Empty the syringe in the waste container.

Spectrophotometer Performance Verification Holmium Oxide Solution Test

Re-connect the syringe.

- 3 Reconnect the syringe to the Luer-lock adapter at the tubing.
- 4 To observe that the flow cell is free from air you may remove it from the cell holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest point while drawing water through it.

Draw 9ml of 10% perchloric acid through flow cell.

- 5 Select an ampule which contains the 10% perchloric acid. Make sure the upper part of the ampule that will be broken off does not contain any liquid. To remove any liquid, turn the ampule upside down to fill it entirely and slowly turn it back that the liquid in the upper part can flow down.
- 6 Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.
- 7 Place the inlet tubing into the ampule and use the syringe to draw 9 ml of 10 % perchloric acid through the flow cell.
- 8 Make sure the flow cell is in the cell holder and the lever is locked (in down position).

Start Blank measurement.

9 Select OK to start the blank measurement.

# **Doing the Holmium Oxide Solution Measurement**

Break ampule with Holmium Oxide solution.

- 1 Select an ampule which contains the holmium oxide in 10% perchloric acid. Make sure the upper part of the ampule which will be broken off does not contain any liquid. To remove any liquid, turn the ampule upside down to fill it entirely and slowly turn it back that the liquid in the upper part can flow down.
- 2 Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Effective 08.01.97

Spectrophotometer Performance Verification Holmium Oxide Solution Test

Draw 9 ml of sample through flow cell.

- **3** Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoid contamination of the standard when you put it into the ampule.
- 4 Place the inlet tubing in the ampule and draw 9 ml of sample using the syrin

Start measurement.

5 Start the measurement in the software, selecting the ok button.

Draw 3-5 ml of water through flow cell.

- 6 When the measurement has finished, remove the inlet tubing from the ampliand wipe any liquid off the end using a tissue.
- 7 Place the inlet tubing in the beaker with water and draw 3–5 ml of water to flush the tubings.

Empty the syringe.

8 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing you disconnected at the same level as the inlet tubing to avoid emptying the tubing and getting air in the flow cell. Empty the syringe in the waste container.

Reconnect the syringe.

9 Reconnect the syringe to the Luer-lock adapter at the tubing.

If this was the last performance test in your test sequence, clean the flow ce before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Sodium Nitrite Stray Light Test Sodium Nitrite Stray Light Test Always use the flow cell and tubings for water phase (white fittings) for these standard. Dispose the waste according to the local safety regulations. WARNING Wear eye glasses and gloves when breaking the ampules, because small glass particles may come off. Observe the warning symbols and labels on the ampules and their packing material and act accordingly. CAUTION Never remove the flow cell from the cell holder between blank measurement and sample measurement. This may cause errors which will give wrong results. **Doing the Blank Measurement** At the prompt: Verification Test 3: Stray Light Fill flow cell or cuvette with water for blank measurement. perform the following steps: Draw 20 ml of water through flow cell. 1 Place the inlet tubing into the beaker with water and use the syringe to draw 20 ml of water into the flow cell. Empty the syringe. 2 To empty the syringe, leave the inlet tubing in the beaker with water and

2 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing you disconnected at the same level as the inlet tubing to avoid emptying the tubing and getting air in the flow cell. Empty the syringe in the waste container.

# Spectrophotometer Performance Verification Sodium Nitrite Stray Light Test

Reconnect the syringe.

- **8** Reconnect the syringe to the Luer-lock adapter at the tubing.
- 4 To observe that the flow cell is free from air you may remove it from th holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest power while drawing water through it.
- 5 Make sure the flow cell is in the cell holder and the lever is locked (in d position).

Start Blank measurement.

6 Select OK to start the blank measurement.

# Doing the Sodium Nitrite Measurement

Break ampule with stray light standard.

- 1 Select an ampule with sodium nitrite in water.
- 2 Make sure the upper part of the ampule which will be broken off does no contain any liquid. To remove any liquid, turn the ampule upside down to it entirely and slowly turn it back that the liquid in the upper part can flor down.
- **3** Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of sample through flow cell.

- 4 Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoic contamination of the standard when you put it into the ampule.
- 5 Place the inlet tubing in the ampule and draw 9 ml of sample using the syrin

Start measurement.

6 Start the measurement of the respective verification procedure in the software, selecting the OK button.

Spectrophotometer Performance Verification Sodium Nitrite Stray Light Test

Draw 3–5 ml of water through flow cell.

- 7 When the measurement has finished, remove the inlet tubing from the ampule and wipe any liquid off the end using a tissue.
- 8 Place the inlet tubing in the beaker with water and draw up 3–5 ml of water to flush the tubings.

Empty the syringe.

9 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing you disconnected at the same level as the inlet tubing to avoid emptying the tubing and getting air in the flow cell. Empty the syringe into the waste container.

#### Reconnect the syringe

10 Reconnect the syringe to the Luer-lock adapter at the tubing.

If this was the last performance test in your test sequence, clean the flow cell before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Sodium Iodide Stray Light Test

# Sodium Iodide Stray Light Test

Always use the flow cell and tubings for water phase (white fittings) for the standard. Dispose the waste according to the local safety regulations.

## WARNING

Wear eye glasses and gloves when breaking the ampules, because sn glass particles may come off. Observe the warning symbols and lab on the ampules and their packing material and act accordingly.

## CAUTION

Never remove the flow cell from the cell holder between blank measurem and sample measurement. This may cause errors which will give wrong results.

# **Doing the Blank Measurement**

At the prompt:

Verification Test 3: Stray Light

Fill flow cell or cuvette with water for blank measurement.

perform the following steps:

Draw 20 ml of water through flow cell.

> 1 Place the inlet tubing into the beaker with water and use the syringe to dra 20 ml of water into the flow cell.

Empty the syringe.

2 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing you disconnected at the same level as the inlet tubing to avoid emptyin the tubing and getting air in the flow cell. Empty the syringe in the waste container.

Effective 08.01.

Spectrophotometer Performance Verification Sodium Iodide Stray Light Test

Reconnect the syringe.

- **3** Reconnect the syringe to the Luer-lock adapter at the tubing.
- 4 To observe that the flow cell is free from air you may remove it from the cell holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest point while drawing water through it.
- 5 Make sure the flow cell is in the cell holder and the lever is locked (in down position).

Start Blank measurement.

6 Select OK to start the blank measurement.

# **Doing the Sodium Iodide Measurement**

Break ampule with stray light standard.

- 1 Select an ampule with sodium iodide in water.
- 2 Make sure the upper part of the ampule which will be broken off does not contain any liquid. To remove any liquid, turn the ampule upside down to fill it entirely and slowly turn it back that the liquid in the upper part can flow down.
- **3** Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of sample through flow cell.

- 4 Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoid contamination of the standard when you put it into the ampule.
- 5 Place the inlet tubing in the ampule and draw 9 ml of sample using the syringe.

Start measurement.

**6** Start the measurement of the respective verification procedure in the software, selecting the OK button.

Spectrophotometer Performance Verification Sodium Iodide Stray Light Test

Draw 3-5 ml of water through flow cell.

- 7 When the measurement has finished, remove the inlet tubing from the am and wipe any liquid off the end using a tissue.
- 8 Place the inlet tubing in the beaker with water and draw up 3–5 ml of wat flush the tubings.

Empty the syringe.

9 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position tubing you disconnected at the same level as the inlet tubing to avoid empt the tubing and getting air in the flow cell. Empty the syringe in the waste container.

#### Reconnect the syringe

10 Reconnect the syringe to the Luer-lock adapter at the tubing.

If this was the last performance test in your test sequence, clean the flow before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Potassium Chloride Stray Light Test

# Potassium Chloride Stray Light Test

Always use the flow cell and tubings for water phase (white fittings) for these standard. Dispose the waste according to the local safety regulations.

# WARNING Wear eye glasses and gloves when breaking the ampules, because small glass particles may come off. Observe the warning symbols and labels on the ampules and their packing material and act accordingly.

**CAUTION** Never remove the flow cell from the cell holder between blank measurement and sample measurement. This may cause errors which will give wrong results.

# **Doing the Blank Measurement**

At the prompt:

Verification Test 3: Stray Light

Fill flow cell or cuvette with water for blank measurement.

perform the following steps:

Draw 20 ml of water through flow cell.

1 Place the inlet tubing in the beaker with water and use the syringe to draw 20 ml of water into the flow cell.

Empty the syringe.

2 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing which you disconnected at the same level as the inlet tubing to avoid emptying the tubing and getting air in the flow cell. Empty the syringe into the waste container.

Spectrophotometer Performance Verification Potassium Chloride Stray Light Test

Reconnect the syringe.

- 8 Reconnect the syringe to the Luer-lock adapter at the tubing.
- 4 To observe that the flow cell is free from air you may remove it from the centrol holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest point while drawing water through it.
- 5 Make sure the flow cell is in the cell holder and the lever is locked (in dow position).

Start Blank measurement.

6 Select OK to start the blank measurement.

# Doing the Potassium Chloride Measurement

Break ampule with stray light standard.

- 1 Select an ampule with Potassium Chloride in water. Make sure the upper pa of the ampule which will be broken off does not contain any liquid. To remov any liquid, turn the ampule upside down to fill it entirely and slowly turn it back that the liquid in the upper part can flow down.
- 2 Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of sample through flow cell.

- **3** Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoid contamination of the standard when you put it into the ampule.
- 4 Place the inlet tubing in the ampule and draw 9 ml of sample using the syring

Start measurement,

5 Start the measurement of the respective verification procedure in the software, selecting the ok button.

# Spectrophotometer Performance Verification Potassium Chloride Stray Light Test

Draw 3-5 ml of water through flow cell.

- 6 When the measurement has finished, remove the inlet tubing from the ampule and wipe any liquid off the end using a tissue.
- 7 Place the inlet tubing in the beaker with water and draw up 3-5 ml of water to flush the tubings.

Empty the syringe.

8 To empty the syringe, leave the inlet tubing in the beaker with water and disconnect the Luer-lock adapter from the syringe. Make sure you position the tubing which you disconnected at the same level as the inlet tubing to avoid emptying of the tubing, i.e. air getting into the flow cell. Empty the syringe into the waste container.

#### Re-connect the syringe

9 Reconnect the syringe to the Luer-lock adapter at the tubing.

If this was the last performance test in your test sequence, clean the flow cell before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Toluene Resolution Test

# **Toluene Resolution Test**

Always use the flow cell and tubings for organic phase (orange fittings) for this standard. Dispose the waste according to the local safety regulations.

# WARNING

Wear eye glasses and gloves when breaking the ampules, because sm glass particles may come off. Observe the warning symbols and labe on the ampules and their packing material and act accordingly.

# CAUTION

Never remove the flow cell from the cell holder between blank measureme and sample measurement. This may cause errors which will give wrong results.

#### **Doing the Blank Measurement**

#### At the prompt:

Clear sample area for Blank Measurement

use the following steps:

#### Break ampule with Hexane.

- 1 Select an ampule which contains hexane. Make sure the upper part of the ampule which will be broken off does not contain any liquid. To remove any liquid, turn the ampule upside down to fill it entirely and slowly turn it back that the liquid in the upper part can flow down.
- 2 Break the ampule and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of Hexane through flow cell.

3 Place the inlet tubing in the ampule and draw 9 ml of hexane using the syringe

# Spectrophotometer Performance Verification Toluene Resolution Test

- 4 To observe that the flow cell is free from air you may remove it from the cell holder of the spectrophotometer. If there is air in the flow cell which is difficult to remove, position it that the outlet tubing is at the highest point while drawing water through it.
- 5 Leave the inlet tubing in the ampule until the blank measurement has finished to avoid air entering the tubing.
- 6 Make sure the flow cell is in the cell holder and the lever is locked (in down position).

Start Blank measurement.

7 Select OK to start the blank measurement.

# **Doing the Toluene Measurement**

Break ampule with Toluene-Hexane.

> 1 Break the ampule which contains toluene solution and position the open ampule in a beaker next to the instrument that it cannot fall over.

Draw 9 ml of sample through flow cell.

- 2 Take the inlet tubing and wipe any liquid off the end using a tissue. There should be an air plug between 1 mm and 10 mm inside the tubing to avoid contamination of the standard when you put it into the ampule.
- **3** Place the inlet tubing in the ampule and draw 9 ml of sample using the syringe.

Start measurement.

4 Start the measurement in the software, selecting the ok button.

Empty the syringe.

- 5 Empty the syringe into the waste container.
- 6 Clean the flow cell before storing it, see "Before you Store the Flow Cell and Tubings" on page 60.

Spectrophotometer Performance Verification Before you Store the Flow Cell and Tubings

# Before you Store the Flow Cell and Tubings

# Storing the Water Phase Flow Cell and Tubings

 CAUTION
 Do not apply this procedure to the organic phase flow cell and tubings (orang color code).

- 1 After the last test in your test sequence is finished, purge the flow cell with 2 ml of water from the beaker.
- 2 Position the flow cell on a tissue and draw as much air as possible through th flow cell into the syringe. Hold the flow cell upside down that any liquid in th flow cell is drained.
- 3 Empty the syringe into the waste container if necessary. Repeat this and the previous step 3-4 times.
- 4 Disconnect the Luer-lock adapter from the syringe and store all items away.

# Storing the Organic Phase Flow Cell and Tubings

CAUTION

Do not apply this procedure to the water phase flow cell and tubings (white color code).

- 1 After the toluene solution test, draw air through the flow cell to empty it.
- 2 Break the second ampule which contains n-Hexane and draw the n-hexane through the flow cell.
- **8** Position the flow cell on a tissue and draw as much air as possible through the flow cell into the syringe. Hold the flow cell upside down that any liquid in the flow cell is drained.
- 4 Empty the syringe into the waste container if necessary. Repeat this and the previous step 3-4 times.
- 5 Disconnect the Luer-lock adapter from the syringe and store all items away.

Spectrophotometer Performance Verification Spectrophotometer OQ/PV Attachment Forms

# Spectrophotometer OQ/PV Attachment Forms

Use Fill-in Form 5 and to record the results of the spectrophotometer performance verification.

Fill-In Form 5

#### Spectrophotometer Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.

|            | G1103A                                 |
|------------|----------------------------------------|
| PACKARD    | Model #                                |
| nufacturer | ······································ |

| Manufa | Cti | Irei |
|--------|-----|------|
|--------|-----|------|

| Serial # | Asset # | System # |  |
|----------|---------|----------|--|
|          |         |          |  |
|          |         |          |  |

Use the printout of the software to record your results in detail. Fill-in Form 6 gives you an overview of all available tests.

If a test is not useful for your particular situation, you can mark it with n/a for not applicable.

| Effective 08.01.97 | Revision 02.00 | 61 of 204 |
|--------------------|----------------|-----------|
|                    |                |           |

Spectrophotometer Performance Verification Spectrophotometer OQ/PV Attachment Forms

#### Fill-in Form 6

# Spectrophotometer Test Results Record

|          | Test Procedure                           | n/a       | Pass                                   | Fail                                                                                                            |
|----------|------------------------------------------|-----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|          | Photometric Accuracy Tests:              |           |                                        |                                                                                                                 |
| 1        | Potassium dichromate solution test       |           |                                        |                                                                                                                 |
| 2        | NIST 930e photometric accuracy test      |           |                                        |                                                                                                                 |
|          | Wavelength Accuracy Tests:               |           |                                        |                                                                                                                 |
| 3        | Holmium axide solution test              | $\square$ |                                        |                                                                                                                 |
| 4        | NIST 2034 Holmium OxideTest              |           |                                        |                                                                                                                 |
| 5        | Deuterium lamp emission line test        |           |                                        |                                                                                                                 |
|          | Stray Light Tosts:                       | J         | <b>.</b>                               |                                                                                                                 |
| 6        | Sodium nitrite stray light test          |           |                                        |                                                                                                                 |
| 7        | Sodium iodide stray light test           |           |                                        |                                                                                                                 |
| 8        | Potassium chloride stray light test      | $\square$ |                                        |                                                                                                                 |
|          | Resolution Test:                         |           |                                        | ] <u> </u>                                                                                                      |
| 9        | Toluene solution test                    |           |                                        |                                                                                                                 |
|          | Unattended Instrument Tests:             | · – – – – |                                        | <b></b> , et <b>e e e e e e e e e e</b>                                                                         |
| 10       | Noise test                               |           |                                        |                                                                                                                 |
| 11       | Baseline flatness test                   |           |                                        |                                                                                                                 |
| 12       | Absorbance stability test                |           |                                        |                                                                                                                 |
| Test     | Reason for n/a for any of the above test |           |                                        |                                                                                                                 |
|          |                                          |           |                                        | an earlie de servicie de la composición |
|          |                                          |           |                                        |                                                                                                                 |
| <b>-</b> | · · · · · · · · · · · · · · · · · · ·    |           | ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· |                                                                                                                 |
|          |                                          |           |                                        |                                                                                                                 |
|          |                                          |           | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·                                                                           |
|          |                                          |           |                                        | <u>,</u>                                                                                                        |
|          |                                          |           |                                        |                                                                                                                 |

Committee and a second s

Effective 08.01.97

62 of 204





# Sipper/Autosampler Performance Verification

3

# Sipper/Autosampler Performance Verification

This chapter contains the standard operating procedure for checking and setting the pump time for maximum acceptable cross contamination when using either a sipper system (order number 89068D) or sipper/autosampler system (order number 89068D and 89072A, or 89068D and Gilson 221/222/223).
Sipper/Autosampler Performance Verification Sipper/Autosampler Pump Time Test

# Sipper/Autosampler Pump Time Test

#### Scope

The following procedure describes how to determine the pumping time required to achieve an appropriate acceptable cross contamination between consecutive samples when using a sipper or autosampler system with the HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow appropriate procedure when:

- you install or reinstall the sipper system, and
- at daily intervals.

#### Instrumentation and Software

This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer with a sipper system (order number 89068D) and general purpose software for the HP ChemStation (order number G1115AA). The sipper system may be used alone or in combination with an autosampler.

#### Requirements

To perform this SOP you will require:

- approximately 50 ml of a test sample solution consisting of 0.01 mg/ml of caffeine. This concentration of caffeine has an absorbance of 1.4 AU at 205 nm and 0.5 AU at 273 nm (another sample may be substituted which absorbs at the analytical wavelength of your specific analysis. This sample should have an absorbance of approximately 1 AU), and
- 100 ml of the solvent you used to prepare the sample solution.

Sipper/Autosampler Performance Verification Sipper/Autosampler Pump Time Test

# Procedure

- 1 The sipper system should be properly installed as described in the manual.
- 2 Switch on the HP 8453 spectrophotometer and allow it to warm up for at least 20 minutes before making any measurements.
- **3** Start the HP ChemStation software.
- 4 Select the Verification and Diagnostics mode using the tool bar Mode section (or use the Mode menu).
- **5** Select the Flow Test Task in the graphical user interface (or use the Task menu).
- 6 Ensure that the system is properly configured for the appropriate sipper accessory using the Sampling section of the graphical user interface.
- 7 Set the parameters for operation of the sipper by selecting Setup and Parameter in the graphical interface (or use the Instrument menu, Setup Sampling System Parameter) and entering the following:

Pump time: 20 s

Pump Direction: CW

Wait time: 3 s

Sample Return: 0%

Wash time: 0 s

Air Segment: 0 s

- 8 Set the wavelength for your test sample and the desired level of purity using the Setup button in the Flow Test window of the graphical user interface.
- **9** Put the end of the sipper tube (or the end of the autosampler probe) into the reservoir containing the solvent.
- 10 Switch on the pump by clicking on the pump icon in the instrument panel of the graphical user interface and flush the system for approximately twice as long as the pump time you set. Switch off the pump by clicking on the pump icon.
- 11 Put the end of the sipper tube (or the end of the autosampler probe) into the reservoir containing the test sample and start the test using the Run button in the Flow Test window. The test will take 50% longer than the pump time you

have entered. You should get a graphic display of the absorbance versus time trace and a display of the pump time in seconds required to achieve the entered % purity.

12 If the estimated pump time is more than 20% different from your initial pump time, enter the estimated pump time under step 7 and repeat steps 9 through 11. Repeat until you get consecutive results within 10% or 1 second, whichever is greater.

# Acceptance

Optimal pump time has been achieved, when the flow test indicates that you get consecutive results within 10% or 1 second, whichever is greater. Use Fill-in Form 7 through Fill-in Form 10 to document your results. If the test fails, refer to "Troubleshooting" on page 67.

# Troubleshooting

If good results cannot be obtained:

- Check if there is a bubble in the flow cell, if yes, gentle tapping of the cell will help to dislodge it.
- Check the flow rate of your pump and replace the pump tubing if necessary.
- Check for air being sucked in at one of the fittings.
- Check rate of your pump and replace the pump tubing if necessary.

Sipper/Autosampler Performance Verification Sipper/Autosampler Attachment Forms

| Sipper/Autosample | <sup>•</sup> Attachment Forms |
|-------------------|-------------------------------|
|-------------------|-------------------------------|

Use Fill-in Form 7 and Fill-in Form 8 to record the results of the sipper/autosampler performance verification.

# Fill-in Form 7

ALL HARDS

# **Sipper Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.

|                         | 89068C  |
|-------------------------|---------|
| <br>HEWLETT.<br>PACKARD | Model # |
|                         |         |

Manufacturer

| Pump Serial # | Asset # | System # |  |
|---------------|---------|----------|--|

Fill-in Form 8

### **Sipper Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.

| Ø                    | Ianufacturer |                       |  |  |  |
|----------------------|--------------|-----------------------|--|--|--|
| Manufacturer         |              | J                     |  |  |  |
|                      |              |                       |  |  |  |
|                      |              |                       |  |  |  |
| Autosampler Serial # | Asset #      | System #              |  |  |  |
|                      |              |                       |  |  |  |
| 68 of 204            | Revision 02. | 00 Effective 08.01.97 |  |  |  |

Sipper/Autosampler Performance Verification
Sipper/Autosampler Attachment Forms

Fill-in Form 9 and Fill-in Form 10 give you an overview of all available tests.

Fill-in Form 9

Sipper Test Results

|           | Set Point | Upper Limit | Lower Limit | Measured |  |  |
|-----------|-----------|-------------|-------------|----------|--|--|
| Pump Time |           |             |             |          |  |  |
|           | Passed    |             | Failed      |          |  |  |

Fill-in Form 10

**Autosampler Test Results** 

|           | Set Point | Upper Limit | Lower Limit | Measured |  |  |
|-----------|-----------|-------------|-------------|----------|--|--|
| Pump Time |           |             |             |          |  |  |
|           | Passed    |             | Failed      |          |  |  |



Effective 08.01.97

Sipper/Autosampler Performance Verification Sipper/Autosampler Attachment Forms

70 of 204

Effective 08.01.97





# Multicell Transport Performance Verification

4

# Multicell Transport Performance Verification

This chapter contains the standard operating procedure for testing and optimizing the alignment of each position of the multicell transport (order number 89075D or G1120A).

Multicell Transport Performance Verification Multicell Transport Reproducibility Test

# Multicell Transport Reproducibility Test

#### Scope

The following procedure describes how to achieve optimal alignment of the multicell transport when used with a HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow the appropriate procedure:

- when you install or reinstall the multicell transport assembly,
- after repairing the multicell transport assembly, and
- at monthly intervals.

#### **Instrumentation and Software**

This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer with a multicell transport (order number 89075D or G1120A) and general purpose software for HP ChemStation (order number G1115AA). The multicell transport is used in place of a single cell holder.

#### Requirements

To perform this SOP you will require:

• MCT adjustment tool (part number 89075-23800) as the target used to check alignment of the multicell transport.

# Procedure

- 1 The multicell transport assembly should be properly installed as described in the manual.
- 2 All flow cells and/or cuvettes should be removed from the multicell transport assembly.

Multicell Transport Performance Verification Multicell Transport Reproducibility Test

- 8 Switch on the spectrophotometer and allow it to warm up for at least 20 minutes before attempting to align the multicell transport assembly.
- **4** Start the HP ChemStation software.
- **5** Select the Verification and Diagnostics mode using the tool bar Mode selection (or use the Mode menu).
- 6 Select the Maintenance Task from the graphical user interface task panel (or use the Task menu).
- 7 Select the MCT Test/Recalibration function from the graphical interface task panel.
- 8 If you are verifying a multicell transport of type 89075D, open the locking lever on the multicell transport assembly.
- 9 Insert the multicell adjustment tool into position 2 of the multicell transport. Orient the indicator on the top of the multicell adjustment tool towards the light source. If you are verifying a multicell transport of type 89075D, close the locking lever. During this step, position 1 must remain free and clear of all obstructions to allow for a successful blank measurement.
- 10 In the multicell transport adjustment test panel, deselect all cell positions with the exception of cell position 2.
- 11 Start the test.
- 12 When the test has finished, select recalibrate, and repeat the test. The results should indicate that this cell position is now optimally aligned.
- 13 Repeat steps 8 through 11 using cell positions 3, 4, 5, 6, 7, 8 (only when a multicell transport of type G1120A is installed) and 1, ensuring optimal alignment of all cell positions within the multicell transport assembly.

#### Acceptance

Optimal alignment of the multicell transport of type 89075C/Dhas been successful when the multicell transport adjustment test indicates that all cell positions require no further adjustment, that means the turns necessary to adjust the multicell transport are less than 0.2 turns. Use Fill-in Form 12 on page 77 to document your results. The multicell transport of type G1120A is recalibrated by the firmware of the spectrophotometer and needs no mechanical adjustment. If the test fails, refer to "Troubleshooting" on page 75.

# Troubleshooting

If good results cannot be obtained:

• Check to be sure the sampling system is properly configured as a multicell transport.

A CONTRACTOR OF A CONTRACTOR OF

- Check to be sure that the multicell transport is properly mounted within the sample compartment.
- Check to be sure the multicell transport adjustment tool is seated and locked properly into the multicell transport assembly.
- For a multicell transport of type 89075D, use the MCT alignment tool in cell position 4, complete steps 8 and 9 to ensure alignment of the MCT. Using a 1.5 mm hex key (part number 8710-0909), turn the home sensor switch adjustment screw the recommended number of turns. Repeat the multicell transport reproducibility test.
- Check to be sure that the multicell transport assembly is not defective.
- Call Hewlett-Packard.

Multicell Transport Performance Verification Multicell Transport OQ/PV Attachment Forms

# Multicell Transport OQ/PV Attachment Forms

Use Fill-in Form 11 to record the hardware for which the performance verification was carried out.

#### Fill-in Form 11

### Multicell Transport Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



| Serial MCT# | Asset # | System # |
|-------------|---------|----------|

| 职   |   |          |
|-----|---|----------|
|     |   | ابر<br>۱ |
|     | a |          |
| 200 |   |          |

76 of 204

# Multicell Transport Performance Verification Multicell Transport OQ/PV Attachment Forms

Use Fill-in Form 12 to record the performance verification results of the multicell transport.

Fill-in Form 12

Multicell Transport Test Results (89075C/D only)

|                                | Limit         | Turns Required |
|--------------------------------|---------------|----------------|
| Cell 1                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Cell 2                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Cell 3                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Cell 4                         | Passed        | Failed         |
| Turns required (only 89075C/D) | Passed Failed |                |
| Cell 5                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Cell 6                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Celi 7                         | Passed        | Failed         |
| Turns required (only 89075C/D) | < 0.2 turns   |                |
| Cell 8 (only G1120A)           | Passed        | Failed         |

| _  |                                           |            |
|----|-------------------------------------------|------------|
|    |                                           |            |
| Ξ. | 그는 것 같은 것 같 |            |
|    |                                           |            |
| 1  |                                           | 2          |
| 13 |                                           | 143<br>181 |
|    |                                           | . And the  |

Effective 08.01.97

Multicell Transport Performance Verification Multicell Transport OQ/PV Attachment Forms 中,方式计

# Peltier Temperature-Controlled Cell Holder Performance Verification

5

# Peltier Temperature-Controlled Cell Holder Performance Verification

This chapter contains the standard operating procedure for checking the temperature accuracy of the Peltier temperature-controlled cell holder (order number 89090A) using an external temperature measuring device.

Peltier Temperature- Controlled Cell Holder Performance Verification Temperature-accuracy Test of Peltier Temperature-Controlled Cell Holder

# Temperature-accuracy Test of Peltier Temperature-Controlled Cell Holder

# Scope

The following procedure describes how to verify the temperature accuracy of the Peltier temperature-controlled cell holder (order number 89090A) when used with a HP 8453 UV-visible spectroscopy system.

# Frequency

Follow the appropiate procedure:

- after repairing the Peltier temperature-controlled cell holder, and
- on a regular base, with recommended intervals of 6 months.

# Instrumentation and Software

This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer with a Peltier temperature-controlled cell holder (order number 89090A) and general purpose software for HP ChemStation (order number G1115AA). The Peltier temperature-controlled cell holder is used in place of the single cell holder.

# Requirements

To perform this SOP you will require:

- Temperature sensor support tool, part number 89090-84700, for mounting the temperature sensor in the Peltier temperature-controlled cell holder.
- Heraeus QuaT 100 handheld temperature measuring unit.
- Heraeus QuaT 340 external temperature sensor with a temperature accuracy of 0.1 K.

Peltier Temperature- Controlled Cell Holder Performance Verification
Temperature-accuracy Test of Peltier Temperature-Controlled Cell Holder

### Procedure

- 1 The Peltier temperature-controlled cell holder should be properly installed as described in the manual.
- **2** Using the Configuration Editor of the HP ChemStation software, configure your system for use with the Peltier temperature-controlled cell holder. Save this configuration.
- 8 Switch on the spectrophotometer and allow it to warm up for at least 20 minutes before attempting to verify the temperature accuracy of the Peltier temperature-controlled cell holder.
- **4** Switch on the Peltier temperature-controlled cell holder and allow it to warm up for at least 20 minutes before attempting to verify the temperature accuracy of the Peltier temperature-controlled cell holder.
- 5 Open the locking lever on the Peltier temperature-controlled cell holder.
- 6 Insert the QuaT 340 external temperature sensor into the temperature sensor support tool, with the flat portion of the sensor facing towards the center of the tool.
- 7 Insert the temperature sensor support tool and temperature sensor into the cell holder. Insure that the assembly is seated firmly in the cell holder. Close the locking lever.
- 8 Start the HP ChemStation software.
- 9 Using the task panel of the HP ChemStation software, set the temperature of the Peltier temperature-controlled cell holder to 15 °C. Allow 5 minutes for the cell holder, tool, and sensor to equilibrate.
- 10 Record the cell temperature by monitoring the sampling task panel display.
- 11 Record the cell temperature displayed by the Heraeus QuaT 100 temperature measurement unit.
- 12 Repeat steps 9 through 11 using temperature settings of 35 and 50 °C.

#### Acceptance

Successful verification of the performance of the Peltier temperature-controlled cell holder has been achieved if the two recorded values at all three temperatures do not differ by more than 0.3 degrees Peltier Temperature- Controlled Cell Holder Performance Verification
Temperature-accuracy Test of Peltier Temperature-Controlled Cell Holder

Celsius. Use Fill-in Form 14 on page 85 to document your results. If the test fails, refer to t"Troubleshooting" on page 83.

# Troubleshooting

If good results cannot be obtained:

- Check to be sure that the Peltier temperature-controlled cell holder and the external temperature sensor are installed correctly.
- Check to be sure that Peltier temperature-controlled cell holder is activated and that the temperature has been set to the appropriate value.
- Check to be sure the temperature sensor support tool and the QuaT 340 external temperature sensor are seated and locked properly into the Peltier temperature-controlled cell holder.
- Verify that the Heraeus 100/340 handheld temperature measurement unit has recently been calibrated against a NIST-traceable standard. This information should be listed on the test certificate accompanying the unit.
- Check to be sure that the Peltier temperature-controlled cell holder is not defective.
- Call Hewlett-Packard.

Peltier Temperature- Controlled Cell Holder Performance Verification Peltier Controlled Cell Holder OQ/PV Attachment Forms

|                | Peltier Con<br>Attachmen                                                                                    | Peltier Controlled Cell Holder OQ/PV<br>Attachment Forms |          |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------|--|--|--|--|
|                | Use Fill-in Form 13 to record the hardware for which the performance verification was carried out.          |                                                          |          |  |  |  |  |
| ill-in Form 13 | Peltier Controlled                                                                                          | Cell Holder Description                                  |          |  |  |  |  |
|                | This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below. |                                                          |          |  |  |  |  |
|                |                                                                                                             |                                                          | 89090A   |  |  |  |  |
|                |                                                                                                             | Model #                                                  |          |  |  |  |  |
|                | Manufacturer                                                                                                |                                                          | I        |  |  |  |  |
|                |                                                                                                             |                                                          |          |  |  |  |  |
|                | Serial #                                                                                                    | Asset #                                                  | System # |  |  |  |  |

| <br>                                      |                 | <br>·   |                               | <br> | <br> |
|-------------------------------------------|-----------------|---------|-------------------------------|------|------|
| i san | A Sector Sector | а.<br>С | Property same with the second |      |      |
|                                           | 1               |         |                               |      |      |
|                                           |                 | 4.5.5.4 |                               |      |      |

84 of 204

Peltier Temperature- Controlled Cell Holder Performance Verification Peltier Controlled Cell Holder OQ/PV Attachment Forms

Use Fill-in Form 14 to record the results of the Peltier temperature-controlled cell holder performance verification.

6. Care -

Fill-in Form 14

Peltier Temperature-controlled Cell Holder Test Results

| Temperature | Maximum Deviation<br>QuaT + Cell Holder | Measured | OK |
|-------------|-----------------------------------------|----------|----|
| at 15 °C    | 0.1 + 0.3 = 0.4°C                       |          |    |
| at 35 ºCt   | 0.1 + 0.2 = 0.3°C                       |          |    |
| at 50 °C    | 0.1 + 0.3 = 0.4 <sup>o</sup> C          |          |    |
|             | Passed                                  | Failed   |    |



Effective 08.01.97

Peltier Temperature- Controlled Cell Holder Performance Verification Peltier Controlled Cell Holder OO/PV Attachment Forms





Effective 08.01.97

6

Revision 02.00

This chapter contains the standard operating procedure for verification and revalidation of software components:

- General scanning software
- Advanced software
- Biochemical analysis software

The verification procedure for the dissolution testing software is described in "Dissolution Testing System Performance Verification" on page 107. Software Performance Verification Revalidation of General Scanning Software for HP ChemStation

# Revalidation of General Scanning Software for HP ChemStation

#### Scope

The following procedure describes how to validate the general scanning software on a HP ChemStation of a HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow appropriate procedure if:

- you have installed or reinstalled your software,
- you have upgraded your software to a new revision, or
- you have had a software or system crash.

#### Instrumentation and Software

- This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer and general scanning software for HP ChemStation (order number (G1115AA).
- The CD-ROM on which the general scanning software was delivered.
- A printer connected to the system.

# Procedure

- 1 Start Windows.
- 2 Start the HP ChemStation software by clicking the Instrument # Online icon of the HP ChemStations group, where # is the number of the instrument you chose in the configuration process.
- **3** Insert the CD-ROM in your disk drive.
- 4 Load the sample data from the svalid.sd data file of the support\uv\sops\data subdirectory using the Files menu.

#### **Revalidation of General Scanning Software for HP ChemStation**

#### Fixed Wavelengths Task

- **5** Load the fvalid.m method file from the support\uv\sops\8453 subdirectory of the supplemental disk using the Files Menu or the Load Method icon in the tool bar.
- 6 Print a report using the File menu or the printer icon in the tool bar.
- 7 Compare the report with the report in "Exhibit A: Validation Results for General Scanning Software—Fixed Wavelengths" on page 91. With the exception of operator name and report date and time they should be identical.

#### Spectrum/Peaks Task

- 8 Load the svalid m method file from the support/uv/sops/8453 sub-directory of the supplemental disk using the Files Menu or the Load Method icon in the tool bar.
- 9 Print a report using the File menu or the printer icon in the toolbar.
- 10 Compare the report with the report in "Exhibit B: Validation Results for General Scanning Software—Spectrum/Peaks" on page 92. With the exception of operator name and report date and time they should be identical.

#### **Ratio/Equations Task**

- 11 Load the rvalid.m method file from the support/uv/sops/8453 sub-directory of the supplemental disk using the Files Menu or the Load Method icon in the toolbar.
- 12 Print a report using the File menu or the printer icon in the toolbar.
- 13 Compare the report with the report in "Exhibit C: Validation Results for General Scanning Software—Ratio/Equation" on page 92. With the exception of operator name and report date and time they should be identical.

#### **Quantification Task**

- 14 Load the qvalid m method file from the support\uv\sops\8453 sub-directory of the supplemental disk using the Files Menu or the Load Method icon in the tool bar.
- 15 Print a report using the File menu or the printer icon in the tool bar.

Revalidation of General Scanning Software for HP ChemStation

16 Compare the report with the report in "Exhibit D: Validation Results for General Scanning Software—Quantification" on page 93. With the exception of operator name and report date and time they should be identical.

#### Acceptance

Check that the results in the printed reports are identical with the numbers in "Exhibit A: Validation Results for General Scanning Software—Fixed Wavelengths" on page 91 through "Exhibit D: Validation Results for General Scanning Software—Quantification" on page 93 of this SOP. Use Fill-in Form 16 on page 95 to document your results. If the test fails, refer to "Troubleshooting" on page 91.

# Troubleshooting

If the results are not identical reinstall the software and repeat the revalidation procedure. If the results are still not identical, call Hewlett-Packard.

# Exhibit A: Validation Results for General Scanning Software—Fixed Wavelengths

| Method fi | 1e  | : FVALID.M L    | ast update: | Date   | 05/15/95  | Time : | 14:30:49 |
|-----------|-----|-----------------|-------------|--------|-----------|--------|----------|
| Informati | on  | : Fixed Wavelen | gths task v | alidat | ion metho | bđ     |          |
| Data File |     | : D:\SUPPORT\UV | SOPS DATA   | SVALII | D.SD      |        |          |
| Created   |     | : 7-Jun-93 10:3 | 6:22        |        |           |        |          |
| Overlaid  | Spe | ctra:           |             |        |           |        |          |
| [Spectral | Gra | aphic]          |             |        |           |        |          |
|           | #   | Name            | Abs<30      | 0nm>   |           |        |          |
|           | 1   | 300_40          | 1.0         | 080    |           |        |          |
|           | 2   | 300_40+offset   | 1.0         | 4980   |           |        |          |
|           | 3   | 300_40+scatter  | 1.1         | 5190   |           |        |          |
| Report    | gei | nerated by : HP | Signati     | ıre: . |           |        | •        |
|           |     |                 |             |        |           |        |          |
|           |     | *** End         | Fixed Wavel | angth  | Report ** | r Wr   |          |
|           |     |                 |             |        |           |        |          |

**Revalidation of General Scanning Software for HP ChemStation** 

# Exhibit B: Validation Results for General Scanning Software—Spectrum/Peaks

Method file : SVALID.M Last update: Date 05/15/95 Time 14:29:00 Information : Spectrum/Peaks task validation method Data File : D:\SUPPORT\UV\SOPS\DATA\SVALID.SD Created : 7-Jun-93 10:36:22 Overlaid Spectra: [Spectral Graphic] Peaks(nm) d1(Abs)(AU) Valleys(nm) d1(Abs)(AU) # Name ------ 

 1
 300\_40
 280.0
 3.0390E-2
 320.0
 -3.0226E-2

 2
 300\_40+offset
 280.0
 3.0396E-2
 320.0
 -3.0307E-2

 3
 300\_40+scatter
 280.0
 2.7231E-2
 320.0
 -3.2040E-2

 Report generated by : HP Signature: ..... \_\_\_\_\_ \*\*\* End Spectrum/Peak Report \*\*\*

#### \_\_\_\_\_

### Exhibit C: Validation Results for General Scanning Software—Ratio/Equation

Method file : RVALID.M Last update: Date 05/15/95 Time 14:26:45 Information : Ratio/Equation task validation method Data File : D:\SUPPORT\UV\SOPS\DATA\SVALID.SD Created : 7-Jun-93 10:36:22 Overlaid Spectra: [Spectral Graphic] Equation : Ratio = WL1/WL2 Where : WL1 = Abs(252nm), WL2 = Abs(300nm), Wt = Weight, V = Volume # Name Dilut. Factor Weight Volume Ratio Abs<252nm> Abs<300nm> 1 300\_40 1.00000 10.00000 1.00000 5.7114E-2 5.7159E-2 1.00080 1.04980 2 300\_40+offset 1.00000 5.00000 1.00000 0.10123 0.10628 3 300\_40+scatter 1.00000 1.00000 0.32712 0.38009 1.16190 Report generated by : HP Signature: ..... \*\*\* End Ratio/Equation Report \*\*\*

Series and the second

Revalidation of General Scanning Software for HP ChemStation

أفالغانه فيستغذ والمتعافية

Angeler and the second seco

# Exhibit D: Validation Results for General Scanning Software—Quantification

Method file : QVALID.M Last update: Date 05/15/95 Time 14:24:40 Information : Quantification task validation method Data File : D:\SUPPORT\UV\SOPS\DATA\SVALID.SD Created : 7-Jun-93 10:36:22 Overlaid Sample Spectra [Spectra Graphic] Analyte name : 300\_40 Calibration equation: Conc. = -32.48500 A \* d2(Abs) Calibrated at : Date 05/15/95 Time 14:24:40 Operator: Tony Owen Dilut. Factor 300\_40(A) d2(Abs)<300nm> # Name \_\_\_\_\_ -------1.00000 7.9399E-2 1 300\_40 -2.4442E-3 
 1
 300\_40+offset
 1.00000
 8.0633E-2

 3
 300\_40+scatter
 1.00000
 8.0937E-2
 -2.4822E-3 -2.4915E-3 Report generated by : HP Signature: ..... \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \*\*\* End Quantification Report \*\*\* \*\*\*\*\*\*\*\*

Software Performance Verification General Scanning Software OQ/PV Attachment Forms

| • • • •         | General Sca<br>OQ/PV Attac                    | nning Software<br>chment Forms                                   |                                               |
|-----------------|-----------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|
| Fill-in Form 15 | Software Revision D                           | lescription                                                      |                                               |
|                 | This chapter describes revision below (runnin | the OQ/PV tests to be perform<br>g under the given operating sys | ed using the HP ChemStation software stem).   |
|                 | [                                             |                                                                  | G1115AA                                       |
|                 | (I)                                           | HEWLETT®<br>PACKARD                                              | Product #                                     |
|                 | Manufacturer                                  |                                                                  |                                               |
|                 | General scanning soft                         | ware                                                             |                                               |
| 2.              | HP ChemStation softw                          | vare module                                                      | <u>, , , , , , , , , , , , , , , , , , , </u> |
|                 |                                               |                                                                  |                                               |
|                 | License #                                     | Revision #                                                       |                                               |
| ·               |                                               |                                                                  |                                               |
|                 | Operating System                              |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 | Revision #                                    |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 |                                               |                                                                  |                                               |
|                 | 94 of 204                                     | Revision 02.0                                                    | 00 Effective 08.01.97                         |

としたでのないないないないないのないない

えるなが日本の生ませる

**学生社会会保留的资源。** 

# Software Performance Verification General Scanning Software OQ/PV Attachment Forms

Fill-in Form 16

# General Scanning Software

| Type of Test     | Criteria               | Report OK? |  |  |
|------------------|------------------------|------------|--|--|
| Fixed Wavelength | according to Exhibit A |            |  |  |
| Spectrum/Peaks   | according to Exhibit B |            |  |  |
| Ratio/Equation   | according to Exhibit C |            |  |  |
| Quantification   | according to Exhibit D |            |  |  |
| Passed           | Failed                 |            |  |  |



Effective 08.01.97

٠

्यस्य अस्य व्यक्तियाः

Software Performance Verification Revalidation of Advanced Software for HP ChemStation

# Revalidation of Advanced Software for HP ChemStation

# Scope

The following procedure describes how to validate the advanced software on the HP ChemStation of a HP 8453 UV-visible spectroscopy system.

# Frequency

Follow appropriate procedure if:

- · you have installed or reinstalled your software,
- you have upgraded your software to a new revision, or
- you have had a software or system crash

# Instrumentation and Software

- This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer and advanced software for HP ChemStation (order number (G1116AA).
- The CD-ROM on which the advanced software was delivered.
- A printer connected to the system.

# Validation Procedure

- 1 Start Windows.
- 2 Start the HP ChemStation software by clicking the Instrument # Online icon of the HP ChemStations group, where # is the number of the instrument you chose in the configuration process.
- **3** Insert the CD-ROM in your disk drive.
- 4 Select the Advanced mode using the Mode Menu (or by using the Mode combo-box on the Toolbar).
Same a second

#### Revalidation of Advanced Software for HP ChemStation

- 5 Load the Automation Table file avalid.a from the support\uv\sops\8453 subdirectory of the CD-ROM using Load. Automation Table from the File Menu.
- 6 Select Run Automation from the Automation Menu.
- 7 Wait until the Automation finished message appears on the message line and two reports have been printed.

#### Acceptance

Check that the results in the printed reports are identical with the numbers in "Exhibit A: Validation Results for Advanced Software---Report 1" on page 98 and "Exhibit B: Validation Results for Advanced Software---Report 2" on page 99 of this SOP. Use Fill-in Form 18 on page 100 to document your results.

## Troubleshooting

If the results are not identical, reinstall the software and repeat the revalidation procedure. If the results are still not identical, call Hewlett-Packard.

Revalidation of Advanced Software for HP ChemStation

# Exhibit A: Validation Results for Advanced Software—Report 1

| Method file            |         | *** Re   | sul   | ts Report ** | **       |            |      |
|------------------------|---------|----------|-------|--------------|----------|------------|------|
| AGVALID.M<br>Number of | Samples | 3        |       |              |          |            |      |
|                        |         | ne       | ,<br> |              |          |            |      |
| Results Summa:         | Ŷ       |          |       |              |          |            |      |
| Sample Name            | Analyte | Method   |       | WL Result    | Value    | Std.Dev.   | Unit |
| 300_40                 | Result  | Equation | 1     | 3.6059E-3    | 100.000  | <br>)0 *** |      |
|                        |         | Equation | 2     | 2.0701E-4    | 100.0000 | 00 ***     | AU   |
|                        |         | Equation | 3     | 3.6059E-3    | 100.0000 | )0 ***     | AU   |
|                        |         | Equation | 4     | 2.0747E-4    | 100.0000 | )0 ***     |      |
| 00_40+offset           | Result  | Equation | 1     | 3.5815E-3    | 100.0000 | 0 ***      | AU   |
|                        |         | Equation | 2     | 1.9839E-4    | 100.0000 | 0 ***      | AU   |
|                        |         | Equation | 3     | 3.5815E-3    | 100.0000 | )0 ***     | AU   |
|                        |         | Equation | 4     | 1.9954E-4    | 100.0000 | 0 ***      |      |
| 00_40+scatter          | Result  | Equation | 1     | 3.5945E-3    | 100.0000 | 0 ***      | AU   |
|                        |         | Equation | 2     | 2.0606E-4    | 100.0000 | 0 ***      | AU   |
|                        |         | Equation | 3     | 3.5945E-3    | 100.0000 | 0 ***      | AU   |
|                        |         | Equation | 4     | 2.0688E-4    | 100.0000 | 0 ***      |      |

98 of 204

.

20

Software Performance Verification Revalidation of Advanced Software for HP ChemStation

an an an Air an Air

# Exhibit B: Validation Results for Advanced Software—Report 2

|                 |         | ******    |             |           |           |      |
|-----------------|---------|-----------|-------------|-----------|-----------|------|
|                 | ***     | Results   | Report ***  |           |           |      |
| Method file     |         |           |             |           |           |      |
| AQVALID.M       |         |           |             |           |           |      |
| Number of S     | amples  | 2         |             |           |           |      |
| Operator        |         | HP        |             |           |           |      |
| Results Summary |         |           |             |           |           |      |
| Sample Name     | Analyte | Method    | WL Result   | Value     | Std.Dev.  | Unit |
| Mixture         | 300_40  | MCA       | ***         | 1.00030   | 8.2514E-5 | A    |
|                 |         | MCA 1     | · ***       | 1.00030   | 8.2692E-5 | А    |
|                 |         | SCA 2 1.  | 00010 1.00  | 040 1.35  | 24E-4 A   |      |
|                 |         | SCA 3 1.  | 00010 1.00  | 030 7.24  | 87E-5 A   |      |
|                 | 600_80  | MCA       | ***         | 1.00020   | 5.8871E-5 | А    |
|                 |         | MCA 1     | ***         | 1.00030   | 5.9013E-5 | A    |
| Mixture+offset  | 300_40  | MCA       | ***         | 1.00030   | 8.3452E-5 | A    |
|                 |         | MCA 1     | ***         | 1.00040   | 8.3408E-5 | A    |
|                 |         | SCA 2     | 0.99979     | 1.00010   | 1.3522E-4 | А    |
|                 |         | SCA 3     | 0.99979     | 1.00010   | 7.2477E-5 | A    |
|                 | 600_80  | MCA       | ***         | 1.00030   | 5.9540E-5 | A    |
|                 | . —     | MCA 1     | ***         | 1.00030   | 5.9524E-5 | A    |
|                 | *** EI  | nd Result | s Report ** | <br>*<br> |           |      |

Effective 08.01.97

The second second second

er nabethev v

Software Performance Verification Advanced Software OQ/PV Attachment Forms

|                 | OQ/PV Atta                                  | chment Forms                                                  |                                        |                  |  |  |  |
|-----------------|---------------------------------------------|---------------------------------------------------------------|----------------------------------------|------------------|--|--|--|
| Fill-in Form 17 | Software Revision                           | Description                                                   | <u>.</u>                               | ·                |  |  |  |
|                 | This chapter describe revision below (runni | s the OQ/PV tests to be performent of the given operating sys | ed using the HP (<br>tem).             | hemStation softw |  |  |  |
|                 |                                             |                                                               | G1116AA                                |                  |  |  |  |
|                 | (h)                                         | HEWLETT.<br>PACKARD                                           |                                        |                  |  |  |  |
|                 | Manufacturer                                | Manufacturer                                                  |                                        |                  |  |  |  |
|                 | Advanced software                           |                                                               |                                        |                  |  |  |  |
|                 | HP ChemStation softw                        | ware module                                                   |                                        |                  |  |  |  |
|                 |                                             |                                                               |                                        |                  |  |  |  |
|                 | License #                                   | Revision #                                                    |                                        |                  |  |  |  |
|                 | Operating System                            |                                                               |                                        |                  |  |  |  |
|                 | Revision #                                  |                                                               |                                        |                  |  |  |  |
| ill-in Form 18  | Advanced ChemSta                            | tion Software                                                 |                                        | <u></u>          |  |  |  |
|                 | Type of Test                                | Criteria                                                      | ······································ | Report OK?       |  |  |  |
|                 | Report 1                                    | According to                                                  | Exhibit A                              |                  |  |  |  |
|                 | Report 2                                    | According to                                                  | Exhibit B                              |                  |  |  |  |
|                 |                                             | Passed Fai                                                    | led                                    |                  |  |  |  |

and the second second

14

# Revalidation of Biochemical Analysis Software for HP ChemStation

## Scope

The following procedure describes how to validate the biochemical analysis software on a HP ChemStation of a HP 8453 UV-visible spectroscopy system.

## Frequency

Follow appropriate procedure if:

- you have installed or reinstalled your software,
- you have upgraded your software to a new revision, or
- you have had a software or system crash.

## Instrumentation and software

- This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer and biochemical analysis software for HP ChemStation (order number (G1117AA).
- The CD-ROM on which the biochemical analysis software was delivered.
- A printer connected to the system.

# Validation Procedure

- 1 Start Windows.
- 2 Start the HP ChemStation software.
- **3** Insert the CD-ROM in your disk drive.

#### Kinetics Mode

4 Select the Kinetics mode from the Mode selector box in the graphics panel (or by using the Mode Menu).

# Revalidation of Biochemical Analysis Software for HP ChemStation

- 5 Select the sampling system Multicell in the instrument panel or instrument menu.
- 6 Load the kinvalid.kd file from the \sops\data sub-directory of the supplemental disk using Load Data from the Files menu. The results are automatically calculated.
- 7 Print a report using the Print Report icon on the tool bar (or using Print Report from the Files menu).

# Thermal Denaturation Mode

- 8 Select the Thermal Denaturation mode from the Mode selector box in the graphics panel (or by using Mode Menu).
- 9 Load the method file tdvalid.m from the support\uv\sops\8453 subdirectory of the CD-ROM using the Load Method icon on the Toolbar (or using Load Method from the Files menu).
- 10 Load the tdvalid.sd file from the support/uv/sops/data subdirectory of the CD-ROM using Load Data from the Files menu. The results are automatically calculated.
- 11 Print a report by using the Print Report Tool on the Toolbar (or using Print Report from the Files Menu).

#### Acceptance

Check that the results in the printed reports are identical with those in "Exhibit A: Validation Results for Biochemical Analysis Software—Kinetics" on page 103 for kinetics and "Exhibit B: Validation Results for Biochemical Analysis Software—Thermal Denaturation" on page 103 for thermal denaruration of this SOP. Use Fill-in Form 20 on page 105 to document your results.

# Troubleshooting

If the results are not identical reinstall the software and repeat the revalidation procedure. If the results are still not identical, call Hewlett-Packard.

**Revalidation of Biochemical Analysis Software for HP ChemStation** 

# Exhibit A: Validation Results for Biochemical Analysis Software—Kinetics

\_\_\_\_\_ \*\*\* Results Report \*\*\* Method file : <untitled> Information : Default Method of Kinetics Mode Data File : D:SUPPORT\UV\SOPS\DATA\KINVALID.KD Created : 1/9/95 16:31:54 Used Wavelength : 400 nm Background correction : subtract average over range from 550 nm to 570 nm Run Time : 2500.0 s Start Time : 0.0 s Cycle Time : 125.0 s Time Trace : [Graphic Time traces] S S S - - - -Used cell layout: Rate Calculation Type : First order Calculation Time Range : 0 s to Run Time Cell # Name Factor Rate(1/s) Std.Dev Comment \_\_\_\_\_ 
 Trace 1
 1.0000
 1.2743E-3
 2.0051E-5

 Trace 2
 1.0000
 1.2399E-3
 5.8056E-6

 Trace 3
 1.0000
 1.2529E-3
 5.1011E-6
 1 2 3 Report generated by : HP Signature: ..... \*\*\* End Kinetics Results Report \*\*\* \_\_\_\_

# Exhibit B: Validation Results for Biochemical Analysis Software—Thermal Denaturation

```
*** Results Report ***Sample InformationOperator: CgSample Name: DNASolvent: Citrate bufferMolarity: 0.0015 mol/lDNA Length: ---File: TDVALID.TDCreated : 1/24/95 9:45:06Comment: 0.01 ml Sample diluted to 1mlAcquisition ParametersInstrument: OFFLINEAcquisition range: 190 to 1100 nmIntegration Time: 0.5 sIdle Temperature: 45.0 °C
```

Effective 08.01.97

----

March West

Revalidation of Biochemical Analysis Software for HP ChemStation

Used Sensor : External Sensor Ramping Speed : Fast Stirrer Status : Off Autosave File : dna.td Temperature Ramp No. Start Stop Increment Hold Time 45.0 °C 62.0 °C 62.0 °C 77.0 °C 1 1.0 °C 1.00 min 2 0.5 °C 1.00 min 

 77.0 °C
 85.0 °C
 1.0 °C
 0.5 °C
 1.00 min

 77.0 °C
 85.0 °C
 -1.0 °C
 0.50 min

 77.0 °C
 62.0 °C
 -1.0 °C
 1.00 min

 62.0 °C
 45.0 °C
 -1.0 °C
 1.00 min

3 4 5 6 Calculation Parameters Used Wavelength : 260 nm Background Correction : Single reference wavelength at 320 nm Calculation Method : Derivative Filterlength : 55 Sensitivity : ---&GC : 2.44\*(TM-81.5-16.66\*log(M))Volume Correction : ---Whole Temperature Absorbance Trace [Graphic Whole Temperature Absorbance Trace] Interpolated Heating Trace 1 [Graphic Interpolated Heating Trace 1] Derivative of Heating Trace 1 [Graphic First Derivative of Heating Trace 1] Results of Heating Trace 1 Operator : HP Sample Name : DNA SolventName : Citrate buffer Molarity (M) : 0.0015 mol/l DNA Length (K) : ---Date : 1/24/95 Time : 9:45:06 Calculation Range : From 44.3 °C to 82.9 °C Delta Absorbance : 42.25 % Delta Temperature : From 50.2 °C to 73.3 °C Melting Temperature (1): 58.90 °C %GC (1) : 59.65 % Report generated by : HP Signature: ..... \_\_\_\_\_ \*\*\* End Thermal Denat. Results \*\*\* \_\_\_\_\_\*

Software Performance Verification Biochemical Analysis Software OQ/PV Attachment Forms

A REAL PROPERTY AND A REAL PROPERTY A REAL

# **Biochemical Analysis Software OQ/PV** Attachment Forms Fill-in Form 19 **Software Revision Description** This chapter describes the OQ/PV tests to be performed using the HP ChemStation software revision below (running under the given operating system). G1117AA **HEWLETT** Product # PACKARD Manufacturer Biochemical analysis software HP ChemStation software module License # Revision # **Operating System** Revision # Fill-in Form 20 **Biochemical Analysis Software** Type of Test Criteria Report OK? **Kinetics** According to Exhibit A

Passed Failed

Effective 08.01.97

Thermal

According to Exhibit B

Software Performance Verification Biochemical Analysis Software OQ/PV Attachment Forms

S.

4.944

Constant and the second second





# **Dissolution Testing System Performance Verification**

्रम

7

# Dissolution Testing System Performance Verification

This chapter has the following sections:

- "Performance Verification of Offline Sampling Systems for Dissolution Testing" on page 110,
- "Performance Verification of Online Sampling Systems for Dissolution Testing" on page 120,
- "Performance Verification of the Dissolution Testing Software" on page 184, and
- "Performance Verification of the DDE Interface for Bath Drivers" on page 190.

Effective 08.01.97

# Performance Verification of Offline Sampling Systems for Dissolution Testing

This section guides you briefly through the procedure of how to do a performance verification on the different offline sampling systems for dissolution testing.

Dissolution Testing System Performance Verification Performance Verification of Offline Sampling Systems

# Performance Verification of Offline Sampling Systems

## Scope

The following procedure describes how to carry out the verification procedure on an offline sampling system of a HP 8453 UV-visible spectroscopy system.

# Frequency

Follow appropriate procedure:

- when you first install your dissolution testing sampling system,
- on a regular base at intervals of a minimum of 6 months, and
- if you change or exchange any software or hardware of your dissolution testing sampling system.

## Instrumentation and Software

This SOP applies to a HP 8453 UV-visible dissolution testing system comprising a HP 8453 spectrophotometer, a sipper/autosampler sampling system (order number 89068D with HP 89072A, or 89068D with Gilson 221 or Gilson 222), general purpose software for HP ChemStation (order number G1115AA) and dissolution testing software for HP ChemStation (order number G1118AA).

# Requirements

Different tests have different environmental temperature conditions according to the various pharmacopeias. An environmental temperature range between 20-21 °C meets all specifications on which the test in this manual are based.

To perform this SOP you will require:

0Q/PV Standards (1), (2) • OQ/PV standards (1) and (2), part numbers 5063-6503 and 5063-6521

Dissolution Testing System Performance Verification Performance Verification of Offline Sampling Systems

respectively,

50 ml distilled water and 50 ml caffeine/water sample

- approximately 50-ml of distilled water, HPLC grade,
- approximately 50-ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml). Another sample may be substituted which absorbs at the analytical wavelength of your specific analysis. This sample should have an absorbance of approximately 1 AU.

| Preparing the Offline Sampling Systems<br>for the Test                                                                 |
|------------------------------------------------------------------------------------------------------------------------|
| The section describes the different steps for preparing the offline sampling systems for the performance verification. |
| Preparing the Spectrophotometer and the Sipper/Autosampler System                                                      |

NOTE The verification of the individual hardware components has to be carried out during an installation of one of the offline sampling system, or a change/repair of one of the hardware components.

NOTE For an existing and unchanged system, begin the OQ/PV with Chapter 2 "Spectrophotometer Performance Verification".

Prior to the performance verification of the sipper/autosampler system, the verification of the performance of the HP 8453 spectrophotometer and the sipper/autosampler spectrophotometer and system have to be verified. the sipper/sampler

Refer to Chapter 2 "Spectrophotometer Performance Verification" for doing a spectrophotometer performance verification.

Refer to the Chapter 3 "Sipper/Autosampler Performance Verification" for doing a flow test on the sipper/autosampler system.

#### NOTE

system

Performance

These procedures do not verify the performance of any additional hardware used with the off-line sampling systems.

Dissolution Testing System Performance Verification Proparing the Offline Sampling Systems for the Test

# Preparing the Offline Sampling System

Renew pump tubing

1 Exchange the pump tubing against a new one (part number 5041-2166 for pump tubing 2.06 mm id).

# Cleaning Flow Cells and Tubings of Offline Dissolution Testing Systems

Apply the following steps every time before you do a verification to make sure your flow cell is clean and does not trap any air bubbles.

Draw 50 ml of cell passivating and cleaning fluid through flow cell.

- 1 Prepare minimum 50 ml a solution of 5% cell passivating and cleaning fluid (part number 5062-8529) in water for each cell.
- 2 Place the tubing/needle into the beaker with the 5% cell passivating and cleaning fluid and pump the 50 ml of cell passivating and cleaning fluid through each flow cell.

NOTE

You may observe a high amount of air coming through the flow cell, because the solution contains a detergent.

Draw 100 ml of water through flow cell.

- **3** Place the tubing/needle into a beaker with distilled water and draw 100 ml of water through the flow cell.
- **NOTE** Before proceeding with the performance verification, the tubing has to be filled with distilled water.

Dissolution Testing System Performance Verification Performance Verification Procedures for Offline Sampling Systems

# Performance Verification Procedures for Offline Sampling Systems

# **Procedure I**

- 1 If the HP 8453 spectrophotometer is not already turned on, switch the spectrophotometer on.
- 2 Start the HP ChemStation.
- 3 Select Verification and Diagnostics from the Mode menu or tool bar.

Select dissolution test and sipper/autosampler system

- 4 Select Dissolution Test in the Task drop down box of the graphical user interface or by using the Task menu.
- 5 In the Sampling system drop down box choose the offline system in use (Sipper, Autosampler 89072A, Autosampler Gilson 221/222).
- 6 Press the Setup button and check the path length setting. Choose *Parameter* and check the settings of the pump. The default settings for the sipper system and the HP 89072A autosampler are:

Set pump parameters for<br/>sipper system and<br/>autosamplerPump time: 20 s<br/>Pump Direction:<br/>Wait time: 3 s

Pump Direction: CW Wait time: 3 s Reverse time: 0 s Sample Return: 0% Wash Time: 0 s Air Segment: 0 s

The default settings for the Gilson 221/222 autosamplers are:

Pump time: 20 s Pump Direction: CW Wait time: 3 s Sample Return: 0% Air Segment: 0 s

Effective 08.01.97

Dissolution Testing System Performance Verification Performance Verification Procedures for Offline Sampling Systems

#### NOTE

For this test, the same wavelength as specified in the "Sipper/Autosampler Performance Verification" on page 63, is used.

Put probe in distilled water

- 7 Put the tubing/needle into a beaker filled with 50 ml of distilled water.
- 8 Put outlet of the pump into a volumetric flask to measure the amount of water pumped through the flow cell.
- **9** In the graphical user interface of the sampling system press the Flow Rate-button. Set the parameters of the flow rate test by entering the following:

Set flow rate values

Duration: 2 min Direction: CW Limits: 6 ml/min, +/- 10%

Start flow rate measurement and measure the amount of liquid pumped through the cell

10 Start the flow rate test by pressing the OK-button.

- 11 Measure the volume you collected in the beaker and enter it, in units of ml, into the edit box coming up at the end of the flow rate test.
- 12 Check in the test result table coming up, if the test is passed.

#### Acceptance I

The calculated flow rate must be within the limits specified. This is indicated by passed in the *result* column of the test result table. Use Fill-in Form 23 on page 119 to document your results. If the test fails, refer to "Troubleshooting I" on page 116.

#### **Troubleshooting I**

• Check if cells and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as

Dissolution Testing System Performance Verification Performance Verification Procedures for Offline Sampling Systems

described under.

- Check if the pump tubing, has been renewed and that the tubing clamps are closed.
- Depending on whether the pumped volumes are to high or to low, lower or raise the pump speed of the peristaltic pump 1FS.

Dissolution Testing System Performance Verification Offline Sampling Systems OQ/PV Attachment Forms

|                 | Offline Sam                                | pling Systems                                                                                               | <b> </b>                          |  |  |  |  |  |
|-----------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
|                 | OQ/PV Attac                                | OQ/PV Attachment Forms                                                                                      |                                   |  |  |  |  |  |
|                 | Use Fill-in Form 21<br>performance verifi  | l and Fill-in Form 22 to<br>cation was carried out.                                                         | record the hardware for which the |  |  |  |  |  |
| Fill-in Form 21 | Peristaltic Pump 1FS Description           |                                                                                                             |                                   |  |  |  |  |  |
|                 | This chapter describes system component be | This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below. |                                   |  |  |  |  |  |
|                 |                                            |                                                                                                             | G1103-60004 / G1103-60006         |  |  |  |  |  |
|                 | (IP                                        | HEWLETT <sup>®</sup><br>PACKARD                                                                             | Model #                           |  |  |  |  |  |
|                 | Manufacturer                               |                                                                                                             |                                   |  |  |  |  |  |
|                 |                                            | ·····                                                                                                       | ·····                             |  |  |  |  |  |
|                 |                                            |                                                                                                             |                                   |  |  |  |  |  |
|                 | Pump Serial #                              | Asset #                                                                                                     | System #                          |  |  |  |  |  |



118 of 204

Dissolution Testing System Performance Verification Offline Sampling Systems OQ/PV Attachment Forms

Fill-in Form 22

#### Autosampler Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89072A or Gilson 221/222

Model #

Manufacturer

| ······································ |         |          |  |
|----------------------------------------|---------|----------|--|
|                                        |         |          |  |
| Autosampler Serial #                   | Asset # | System # |  |

Use Fill-in Form 23 and to record the results of the offline system performance verification.

Fill-in Form 23

## Sipper / Autosampler Flow Rate Test Results

|           | Set Point | Upper Limit | Lower Limit | Measured |
|-----------|-----------|-------------|-------------|----------|
| Flow Rate |           |             |             |          |
|           | Passed    |             | Failed      |          |



Effective 08.01.97

# Performance Verification of Online Sampling Systems for Dissolution Testing

This section guides you through the procedure of how to do the following performance verification tests:

- "Performance Verification of Multicell Transport Sampling System" on page 121,
- "Performance Verification of Valve Sampling System" on page 137,
- "Performance Verification of Multibath Sampling System" on page 152.

Dissolution Testing System Performance Verification Performance Verification of Multicell Transport Sampling System

# Performance Verification of Multicell Transport Sampling System

#### Scope

The following procedure describes how to carry out the verification procedure on a multicell transport sampling system (order number G1127A) of the HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow appropriate procedure:

- when you first install your dissolution testing sampling system,
- on a regular base at intervals of a minimum of 6 months,
- if you change or exchange any software or hardware of your dissolution testing sampling system.

#### Instrumentation and Software

This SOP applies to a HP 8453 UV-visible dissolution testing system comprising a HP 8453 spectrophotometer, the multicell transport sampling system (order number G1127A), general purpose software for HP ChemStation (order number G1115AA) and dissolution testing for HP ChemStation (order number G1118AA).

#### Requirements

Different tests have different environmental temperature conditions according to the various pharmacopeias. An environmental temperature range between 20-21 °C meets all specifications on which the test in this manual are based.

To perform this SOP you will require:

00/PV Standards (1), (2)

• OQ/PV Standards (1) and (2), part numbers 5063-6503 and 5063-6521 respectively.

Effective 08.01.97

Dissolution Testing System Performance Verification Performance Verification of Multicell Transport Sampling System

MCT adjustment tool 600 ml distilled water and 200 ml caffeine/water sample

- MCT adjustment tool part number 89075-23800.
- 3 beakers filled with approximately 200 ml of distilled water, HPLC grade.
- 2 beakers filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml). Another sample may be substituted which absorbs at the analytical wavelength of your specific analysis. This sample should have an absorbance of approximately 1 AU.

|                                                | Preparing the Multicell Transport<br>Sampling System for the Test                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                                                                                                                                                                                                              |
|                                                | The chapter describes the different steps for preparing the multicell transport sampling system for the performance verification.                                                                                                                                                                                                                            |
|                                                | Preparing the Multicell Dissolution Sampling System                                                                                                                                                                                                                                                                                                          |
| Disconnect bath and<br>remove probes from bati | ٠<br>٠                                                                                                                                                                                                                                                                                                                                                       |
| 1                                              | To avoid any problems coming from the dissolution bath itself, unplug the communication cable connecting the bath with the PC.                                                                                                                                                                                                                               |
| 2                                              | Remove the probes from the dissolution bath.                                                                                                                                                                                                                                                                                                                 |
| NOTE                                           | The performance verification test is best applicable when HP probes<br>(dissolution probe kit, part number 5062-8537) are in use. If possible,<br>exchange any non-HP probes against those coming with the dissolution<br>testing sampling system. In case non-HP probes are used for the verification,<br>adjust the pump times according to your hardware. |
| Renew probe filters                            |                                                                                                                                                                                                                                                                                                                                                              |

3 Replace all probe filters (part number 5181-1246) with new ones.

Renew pump tubings

4 Replace all pump tubings with new ones (part number 5041-2166 for pump tubing 2.06 mm id).

# Cleaning Flow Cells and Tubings of Multicell Dissolution Testing System

Apply the following steps every time before you do a verification to make sure your flow cells is clean and does not trap any air bubbles.

Draw 50 ml of cell passivating and cleaning fluid through flow cell

- 1 Prepare a minimum of 50 ml of a solution of 5% cell passivating and cleaning fluid (part number 5062-8529) in water for each cell.
- 2 Place all probes (with the filter) into the beaker with 400 ml of the 5% cell passivating and cleaning fluid and pump 50 ml of cell passivating and cleaning fluid through each flow cell.

NOTE You may observe a high amount of air coming through the flow cell, because the solution contains a detergent.

Draw 100 ml of water through each flow cell

- 8 Place all probes (with the filter) into a beaker with 800 ml distilled water and draw 100 ml of water through each flow cell.
- **NOTE** Before proceeding with the performance verification, every channel has to be filled with distilled water.

# Preparing the Spectrophotometer, Multicell Transport and Peristaltic Pump 8VS

**NOTE** The verification of the individual hardware components has to be carried out during an installation of a multicell transport sampling system, or a change/repair of one of the hardware components, or at least every 6 months.

**NOTE** For an existing and unchanged system, which is checked out on a daily or weekly basis, begin the OQ/PV with "Procedure I" on page 125.

Performance Verification of the Spectrophotometer and the Multicell Transport Prior to the performance verification of the multicell transport sampling system, the performance of the HP 8453 spectrophotometer, the multicell transport and the peristaltic pump 8VS have to be verified.

Refer to Chapter 2 "Spectrophotometer Performance Verification" for doing a spectrophotometer performance verification.

Refer to the Chapter 6 "Software Performance Verification" for doing a multicell transport performance verification.

# **Procedure I**

- 1 The peristaltic pump 8VS and multicell transport should be properly installed as described in the manual.
- 2 Switch on the spectrophotometer and allow it to warm up for at least 20 minutes before making any measurements.
- **3** Start the HP ChemStation software.
- 4 Select the Verification and Diagnostics mode using the tool bar Mode section (or use the Mode menu).
- **5** Select the Flow Test task in the graphical user interface (or use the Task menu).
- 6 Set the wavelength for your test sample and the desired level of purity using the Setup button in the Flow Test window of the graphical user interface. The default values are the following:

Wavelength: 273 nm Percent: 99.5%

- 7 Select Online Multicell Transport (7 cells) or Online Multicell Transport (8 cells) in the sampling system drop down box.
- 8 Set the parameters for operation of the pump by selecting Setup and Parameter in the graphical interface (or use the Instrument menu, Setup Sampling System. Parameter) and entering the following:

Pump time: 40 s Pump Direction: CW Wait time: 3 s Sample Return: 0%

Wash time: 0 s Air Segment: 0 s

- **9** Select the Cell you want to test in the Flow Test window of the graphical user interface.
- **10** Put the end of the probe of the channel you want to test into the reservoir containing the solvent.
- 11 Switch on the pump by clicking on the pump icon in the instrument panel of the graphical user interface and flush the system for approximately twice as long as the pump time you set. Switch off the pump by clicking on the pump icon.
- 12 Make a Blank measurement.
- 13 Put the end of the probe of the channel you want to test into the reservoir containing the test sample and start the test using the Run button in the Flow Test window. The test will take 50% longer than the pump time you have entered. You should get a graphic display of the absorbance versus time trace and a display of the pump time in seconds required for every channel to achieve the entered % purity.
- 14 If the estimated pump time is more than 20% different from your initial pump time, enter the estimated pump time under step 8 and repeat steps 10 through 13. Repeat until you get consecutive results within 10% or 1 second, whichever is greater.
- **15** Repeat steps 9 through 14 for every cell in use.

#### Acceptance I

Optimal pump time has been achieved, when the flow test indicates that you get consecutive results within 10% or 1 second, whichever is greater. Use Fill-in Form 26 on page 134 to document your results. If the test fails, refer to "Troubleshooting I" on page 126.

# **Troubleshooting I**

If good results cannot be obtained:

• Check if there is a bubble in the flow cell, if yes, gentle tapping of the cell will help to dislodge it.

- Check the flow rate of your pump and replace the pump tubing if necessary.
- Check for air being sucked in at one of the fittings.

Dissolution Testing System Performance Verification Performance Verification Procedures for Multicell Transport Sampling System

| ·                                                              |                                                                                                                                                                |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | Performance Verification Procedures for<br>Multicell Transport Sampling System                                                                                 |
|                                                                | Procedure II                                                                                                                                                   |
| 1                                                              | If the HP 8453 spectrophotometer is not already turned on, switch the spectrophotometer on.                                                                    |
| 2                                                              | Start the HP ChemStation.                                                                                                                                      |
| 8                                                              | Select Verification and Diagnostics from the Mode menu or tool bar.                                                                                            |
| Select Dissolution Test<br>and Multicell as<br>sampling system |                                                                                                                                                                |
| 4                                                              | Select Dissolution Test in the Task drop down box of the graphical user interface or by using the Task menu.                                                   |
| . 5                                                            | In the <i>Sampling</i> system drop down box choose Online Multicell (7-cell) or Online Multicell (8-cell), depending on your multicell transport.              |
| NOTE                                                           | For this test, the same wavelength is used as specified in Chapter 4 "Multicell<br>Transport Performance Verification".                                        |
| Put probe in distilled<br>water                                |                                                                                                                                                                |
| 6                                                              | Put probe 1 into a beaker filled with 200 ml of distilled water and select the cell in the graphical user interface accordingly.                               |
| 7                                                              | Put return of probe 1 into a volumetric flask to measure the amount of water pumped through the flow cell.                                                     |
| 8                                                              | In the graphical user interface of the sampling system press the <i>Flow Rate</i> -button. Set the parameters of the flow rate test by entering the following: |
| Set flow rate values                                           | Duration: 2 min<br>Direction: CW<br>Limits: 6 ml/min, +/- 10%                                                                                                  |
|                                                                |                                                                                                                                                                |

間合 論

Dissolution Testing System Performance Verification Performance Verification Procedures for Multicell Transport Sampling System

Start flow rate measurement and measure the amount of liquid pumped through each cell

- **9** Start the flow rate test by pressing the OK-button.
- 10 Measure the volume you collected in the volumetric flask and enter it, in units of ml, into the edit box coming up at the end of the flow rate test.
- 11 Check in the test result table coming up, if the test is passed.
- 12 Repeat steps 6 through 11 for each cell of the multicell transport.

## Acceptance II

The calculated flow rate must be within the limits specified. This is indicated by passed in the *result* column of the test result table. Use Fill-in Form 27 on page 135 to document your results. If the test fails, refer to "Troubleshooting II" on page 129.

## **Troubleshooting II**

- Check if cells and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as described in "Cleaning Flow Cells and Tubings of Multicell Dissolution Testing System" on page 123.
- Check if all pump tubings, filter tips have been renewed and that the tubing clamps are closed.
- Depending on whether the pumped volumes are to high or to low, lower or raise the pump speed.

Dissolution Testing System Performance Verification Performance Verification Procedures for Multicell Transport Sampling System

## **Procedure III**

1 Press the Cross Contamination-button in the graphical user interface. Set the parameters of the cross contamination test by entering the following:

NOTE273 nm is set-up as default wavelength when the caffeine sample (part number<br/>5063-6524) is used for the test and the path length of the cell 10 mm. For 1 mm<br/>path length cells use 205 nm as default wavelength.

Wavelength: 273 nm Minimum limit: 99.5% Maximum limit: 0.5%

Mark all cell positions you want to verify.

2 Start the cross-contamination test by pressing the OK-button.

Put all probes into distilled water

- **3** Put all probes into a beaker filled with approximately 200 ml of distilled water (HPLC grade), or your Blank medium, and press OK.
- 4 Put all probes into a beaker filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml), or your Sample medium, and press *OK*.
- 5 Repeat steps 3 and 4 as prompted by the software.

## Acceptance III

For each of the cells the table should show *passed* in the result column. Use Fill-in Form 28 on page 136 to document your results. If one of the cells failed the test, refer to "Troubleshooting III" on page 130.

## **Troubleshooting III**

• Check if cells and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as described in "Cleaning Flow Cells and Tubings of Multicell Dissolution Testing System" on page 123.
Dissolution Testing System Performance Verification

Performance Verification Procedures for Multicell Transport Sampling System

- Check if all pump tubings, filter tips have been renewed and that the tubing clamps are closed.
- Go back to Flow Task test and check the pump time. Depending on whether the pump time is to high or to low, lower or raise the pump time.

| <u> </u>                                                                                                                                                                                   |                                                                                                                                                                                    | u and a state of the                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Multicell Transport Sampling System<br>OQ/PV Attachment Forms<br>Use Fill-in Form 24 and Fill-in Form 25 to record the hardware for which the<br>performance verification was carried out. |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
| 89092A                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
| (IP)                                                                                                                                                                                       | D HEWLETT <sup>®</sup><br>PACKARD                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |  |  |
| Manufacturer                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |  |
| Pump Serial #                                                                                                                                                                              | Asset #                                                                                                                                                                            | System #                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                            | Multicell Tra<br>OQ/PV Attac<br>Use Fill-in Form 24<br>performance verifi<br>Peristaltic Pump 8V<br>This chapter describes<br>system component be<br>Manufacturer<br>Pump Serial # | Multicell Transport Samplin<br>OQ/PV Attachment Forms   Use Fill-in Form 24 and Fill-in Form 25 to n<br>performance verification was carried out.   Peristaltic Pump 8VS Description   This chapter describes the OQ/PV tests to be perfor<br>system component below.   Image: Component below.   Manufacturer   Pump Serial # Asset # |  |  |



132 of 204

| Fi | ļ | -in | Form | 25 |
|----|---|-----|------|----|
|----|---|-----|------|----|

#### **Multicell Transport Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



HP 89075C/D or G1120A

Model #

#### Manufacturer

| MCT Serial # | Asset # | System # |  |
|--------------|---------|----------|--|
| ····         |         |          |  |
| · · · · ·    |         |          |  |
|              |         |          |  |
|              |         |          |  |



Effective 08.01.97

133 of 204

Use Fill-in Form 26 through Fill-in Form 28 to record the performance verification results of the multicell transport.

#### Fill-In Form 26

Peristaltic Pump 8VS / Multicell Transport Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             | •           |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| 194 of 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dovicio                                                                                                           | n 02 00                                                                                                        | Fffootiv                              | o 08 01 07                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                |                                       |                                         |
| na<br>na<br>na statustika sa sa na sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | and a second |                                       |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                | n n n n n n n n n n n n n n n n n n n | - I I I I I I I I I I I I I I I I I I I |
| Constant Street and St | a second | es. Charles and a second second                                                                                | No. 1                                 | NOT THE OWNER OF THE OWNER OF           |

#### Fill-in Form 27

## Peristaltic Pump 8VS / Multicell Transport Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Flow Rate<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

Effective 08.01.97

## Fill-in Form 28

## Peristaltic Pump 8VS / Multicell Transport Cross-Contamination Test Result (Procedure III)

|                              | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2 |                             |          |                           |          |
| · .                          | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    | i        |
| Relative Abs. %<br>Channel 4 |                             |          |                           |          |
| <u> </u>                     | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |

| 136 of 904 Posteion 02 00 Fff | octivo 08 01 97                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                                                                                                                                                                                                                                            |
|                               | Andrea (Series and Series and Serie<br>Andrea (Series and Series and Series<br>Andrea (Series and Series |

Dissolution Testing System Performance Verification Performance Verification of Valve Sampling System

## Performance Verification of Valve Sampling System

#### Scope

The following procedure describes how to carry out the verification procedure on a valve sampling system (order number G1128A) of a HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow appropriate procedure:

- when you first install your dissolution testing sampling system,
- on a regular base at intervals of a minimum of 6 months,
- if you change or exchange any software or hardware of your dissolution testing sampling system.

#### Instrumentation and Software

This SOP applies to HP 8453 UV-visible dissolution testing system comprising a HP 8453 spectrophotometer, the valve sampling system (order number G1128A), general purpose software for HP ChemStation (order number G1115AA) and dissolution testing software for HP ChemStation (order number G1118AA).

#### Requirements

Different tests have different environmental temperature conditions according to the various pharmacopeias. An environmental temperature range between 20-21 °C meets all specifications on which the test in this manual are based.

To perform this SOP you will require:

00/PV Standards (1), (2)

• OQ-PV Standards (1) and (2), part numbers 5063-6503 and 5063-6521 respectively.

Dissolution Testing System Performance Verification Performance Verification of Valve Sampling System

600 ml distilled water and 200 ml caffeine/water sample

- 3 beakers filled with approximately 200 ml of distilled water, HPLC grade,
- 2 beakers filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml). Another sample may be substituted which absorbs at the analytical wavelength of your specific analysis. This sample should have an absorbance of approximately 1 AU.

**Dissolution Testing System Performance Verification** Preparing the Valve Sampling System for the Test **Preparing the Valve Sampling System for** the Test The section describes the different steps for preparing the valve sampling system for performance verification. **Preparing the Valve Dissolution Testing System** Disconnect bath and remove probes from bath 1 To avoid any problems coming from the dissolution bath itself, unplug the communication cable connecting the bath with the PC. **2** Remove the probes from the dissolution bath. NOTE The performance verification test is best applicable when HP probes (dissolution probe kit, part number 5062-8537) are in use. If possible, exchange any non-HP probes against those coming with the dissolution testing sampling system. In case non-HP probes are used for the verification, adjust the pump times according to your hardware. Renew probe filters

**3** Exchange all probe filters (part number 5181-1246) against new ones.

Renew pump tubing

4 Exchange the pump tubing against a new one (pump tubing 2.06 mm id, part number 5041-2166).

## Cleaning Flow Cells and Tubings of Valve Dissolution Testing System

Apply the following steps every time before you do a verification to make sure your flow cell is clean and does not trap any air bubbles. Dissolution Testing System Performance Verification Preparing the Valve Sampling System for the Test

Draw 50 ml of cell passivating and cleaning fluid through flow cell

- 1 Prepare a minimum of 50 ml of a solution of 5% cell passivating and cleaning fluid (part number 5062-8529) in water for each cell.
- 2 Place the probe according to the selected channel (with the filter) into the beaker with the 5% cell passivating and cleaning fluid and pump the 50 ml of cell passivating and cleaning fluid through each flow cell.

**NOTE** You may observe a high amount of air coming through the flow cell, because the solution contains a detergent.

8 Repeat step 1 and 2 for each of the channels.

Draw 100 ml of water through flow cell

- 4 Place the probe according to the selected channel (with the filter) into a beaker with distilled water and draw 100 ml of water through each flow cell.
- 5 Repeat step 4 for each of the channels.
- **NOTE** Before proceeding with the performance verification, every channel has to be filled with distilled water.

## Preparing the Spectrophotometer, Eight-port Valve and Peristaltic Pump 1VS

**NOTE** The verification of the individual hardware components has to be carried out during an installation of a valve sampling system, or a change/repair of one of the hardware components, or at least every 6 months.

**NOTE** For a existing and unchanged system, which is checked on a daily or weekly basis, begin the OQ/PV with "Procedure I" on page 141.

Dissolution Testing System Performance Verification Preparing the Valve Sampling System for the Test

Performance Verification of the Spectrophotometer and the Valve Prior to the performance verification of the valve sampling system, the performance of the HP 8453 spectrophotometer, eight-port valve and peristaltic pump 1VS have to be verified.

Refer to Chapter 2 "Spectrophotometer Performance Verification" for doing a spectrophotometer performance verification.

## **Procedure I**

- 1 The eight-port valve and peristaltic pump 1VS should be properly installed as described in the manual.
- 2 Switch on the HP 8453 spectrophotometer and allow it to warm up for at least 20 minutes before making any measurements.
- **3** Start the HP ChemStation software.
- 4 Select the Verification and Diagnostics mode using the tool bar Mode section (or use the Mode menu).
- **5** Select the Flow Test task in the graphical user interface (or use the Task menu).
- 6 Set the wavelength for your test sample and the desired level of purity using the *Setup* button in the Flow Test window of the graphical user interface. The default values are the following:

Wavelength: 273 nm Percent: 99.5%

- 7 Select Online Valve System in the sampling system drop down box.
- 8 Set the parameters for operation of the pump by selecting Setup and Parameter in the graphical interface (or use the Instrument menu, Setup Sampling System. Parameter) and entering the following:

Pump time: 47 s (fixed, depending on method loaded previously in dissolution module) Pump Direction: CW

NOTEThe pump time is fixed to 47 seconds whenever a cycle time of 7.5 minutes has<br/>been chosen. For a cycle time of 5 minutes, the pump time is 29 seconds,<br/>whereas for a cycle time of 10 minutes you will get a pump time of 58 seconds.

Dissolution Testing System Performance Verification Preparing the Valve Sampling System for the Test

- **9** Select the Channel you want to test in the Flow Test window of the graphical user interface.
- 10 Put the end of the probe of the channel you want to test into the reservoir containing the solvent.
- 11 Switch on the pump by clicking on the pump icon in the instrument panel of the graphical user interface and flush the system for approximately twice as long as the pump time you set. Switch off the pump by clicking on the pump icon.
- 12 Make a Blank measurement.
- 18 Put the end of the probe of the channel you want to test into the reservoir containing the test sample and start the test using the Run button in the Flow Test window. The test will take 50% longer than the pump time you have entered. You should get a graphic display of the absorbance versus time trace and a display of the pump time in seconds required for every channel to achieve the entered % purity.
- 14 Repeat the test for each of the channels.

#### Acceptance I

Optimal pump time has been achieved, when the flow test indicates that you get consecutive results within 10% or 1 second, whichever is greater. Use Fill-in Form 31 on page 149 to document your results. If the test fails, refer to "Troubleshooting I" on page 142.

#### **Troubleshooting I**

If good results cannot be obtained:

- Check if there is a bubble in the flow cell, if yes, gentle tapping of the cell will help to dislodge it.
- Check the flow rate of your pump and replace the pump tubing if necessary.
- Check for air being sucked in at one of the fittings.
- Check rate of your pump and replace the pump tubing if necessary.

.

|                                                               |   | Performance Verification Procedures for<br>Valve Sampling System                                                                                                                                                                            |
|---------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |   | Procedure II                                                                                                                                                                                                                                |
|                                                               | 1 | If the HP 8453 spectrophotometer is not already turned on, switch the spectrophotometer on.                                                                                                                                                 |
|                                                               | 2 | Start the HP ChemStation.                                                                                                                                                                                                                   |
|                                                               | 8 | Select Verification and Diagnostics from the Mode menu or tool bar.                                                                                                                                                                         |
| Select dissolution tes<br>and multicell as<br>sampling system | t |                                                                                                                                                                                                                                             |
|                                                               | 4 | Select Dissolution Test in the Task drop down box of the graphical user interface or by using the Task menu.                                                                                                                                |
|                                                               | 5 | In the Sampling system drop down box choose Online Valve System.                                                                                                                                                                            |
|                                                               | 6 | Press the Setup button and check the settings of the pump. The default settings are:                                                                                                                                                        |
| Set pump parameters                                           |   | Pump time: 47 s<br>(fixed, depending on method loaded previously in dissolution mode)<br>Pump Direction: CW<br>Wait time: 3 s<br>Reverse time: 0 s                                                                                          |
| NOTE                                                          |   | The pump time is fixed to 47 seconds whenever a cycle time of 7.5 minutes has<br>been chosen. For a cycle time of 5 minutes, the pump time is 29 seconds,<br>whereas for a cycle time of 10 minutes you will get a pump time of 58 seconds. |

Put probe in distilled water

7 Put probe 1 into a beaker filled with 200 ml of distilled water and select the channel in the graphical user interface accordingly.

18年期

- 8 Put return of probe 1 into a beaker to measure the amount of water pumped through the flow cell.
- 9 In the graphical user interface of the sampling system press the Flow Rate-button. Set the parameters of the flow rate test by entering the following:

Set flow rate values

Duration: 2 min Direction: CW Limits: 6 ml/min, +/- 10%

Start flow rate measurement and measure the amount of liquid pumped through each channel

- 10 Start the flow rate test by pressing the OK-button.
- 11 Measure the volume you collected in the beaker and enter it, in units of ml, into the edit box coming up at the end of the flow rate test.
- 12 Check in the test result table coming up, if the test is passed.
- 18 Repeat steps 7 through 12 for each channel of the valve.

#### Acceptance II

The calculated flow rate must be within the limits specified. This is indicated by passed in the *result* column of the test result table. If the test fails, refer to "Troubleshooting II" on page 144.

#### **Troubleshooting II**

- Check if cells and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as described in "Cleaning Flow Cells and Tubings of Valve Dissolution Testing System" on page 139.
- Check if the pump tubing, filter tip have been renewed and that the tubing clamp is closed.
- Depending on whether the pumped volumes are to high or to low, lower or raise the pump speed.

|                                      |   | Dissolution Testing System Performance Verification<br>Performance Verification Procedures for Valve Sampling System                                                                                            |
|--------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |   | Procedure III                                                                                                                                                                                                   |
|                                      | 1 | Press the Cross Contamination-button in the graphical user interface. Set the parameters of the cross contamination test by entering the following:                                                             |
| •                                    |   | Wavelength: 273 nm<br>Minimum limit: 99.5%<br>Maximum limit: 0.5%                                                                                                                                               |
| NOTE                                 |   | 273 nm is setup as default wavelength when the caffeine sample (part number 5063-6524) is used for the test and the path length of the cell 10 mm. For 1 mm path length cells use 205 nm as default wavelength. |
|                                      | 2 | Start the cross contamination test by pressing the OK-button.                                                                                                                                                   |
|                                      | 3 | Put probe 1 into a beaker filled with distilled water or Blank medium. Press the OK-button.                                                                                                                     |
|                                      | 4 | Put probe 1 into a beaker filled with a mixture of caffeine/distilled water,<br>HPLC grade (part number 5063-6524 for 50 ml) or the Sample medium. Press<br>the OK-button.                                      |
| NOTE                                 |   | Ensure having chosen a wavelength where your sample shows an absorbance of approximately 1 AU.                                                                                                                  |
| Put probes 1,3,5,7 into<br>the blank | 0 |                                                                                                                                                                                                                 |
|                                      | 5 | Put probes 1,3,5,7 into a beaker filled with approximately 200 ml of distilled water (HPLC grade), or your Blank medium.                                                                                        |

Put probes 2,4,6,8 into the sample

6 Put probes 2,4,6,8 into a beaker filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml), or your Sample medium, and press *OK*.

Put probes 2,4,6,8 into the blank

7 Put probes 2, 4, 6 and 8 into a beaker filled with approximately 200 ml of distilled water (HPLC grade), or your blank medium.

Put probes 1,3,5,7 into the sample

8 Put probes 1, 3, 5 and 7 into a beaker filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml), or your Sample medium, and press OK.

## Acceptance III

For each of the channels the table should show *passed* in the result column. If one of the channels failed the test, refer to "Troubleshooting III" on page 146.

## **Troubleshooting III**

- Check if the cell and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as described under .
- Check if the pump tubing, filter tip have been renewed and that the tubing clamp is closed.
- Go back to Flow Task test and check the pump time. Depending on whether the pump time is to high or to low, lower or raise the pump time.
- Check if the valve fittings tightened. To ensure proper installation of the fittings, tighten them gently with the wrench shipped with the valve sampling system.

|                 | Valve Sampling System<br>OQ/PV Attachment Forms<br>Use Fill-in Form 29 and Fill-in Form 30 to record the hardware for which the<br>performance verification was carried out. |                                       |                           |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|--|--|--|
|                 |                                                                                                                                                                              |                                       |                           |  |  |  |
| Fill-in Form 29 | Peristaltic Pump 1V                                                                                                                                                          | Peristaltic Pump 1VS Description      |                           |  |  |  |
|                 | This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.                                                                  |                                       |                           |  |  |  |
|                 |                                                                                                                                                                              |                                       | G1103-60004 / G1103-60006 |  |  |  |
|                 | (I)                                                                                                                                                                          | HEWLETT®<br>PACKARD                   | Model #                   |  |  |  |
|                 | Manufacturer                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                           |  |  |  |
|                 |                                                                                                                                                                              |                                       |                           |  |  |  |
|                 | Pump Serial #                                                                                                                                                                | Asset #                               | System #                  |  |  |  |

| st |  |
|----|--|
|    |  |
|    |  |

Effective 08.01.97

Fill-in Form 30

#### Valve Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89079A Model #

#### Manufacturer

|                | ······································ |          |  |
|----------------|----------------------------------------|----------|--|
|                |                                        |          |  |
| /alve Serial # | Asset #                                | System # |  |



Use Fill-in Form 31 through Fill-in Form 33 to record the performance verification results of the valve system.

#### Fill-in Form 31

Eight-port Valve / Peristaltic Pump 1VS Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      | _        |
| Pump Time<br>Channel 3 |           |             |             |          |
| <u> </u>               | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    | · ·         | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| المحيون المستعمل فالمحتج المحتج المحتج والمحتج المحتج المحتج المحتج المحتج المحتج المحتج المحتج المحتج المحتج ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Company of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                       |                            |
| The diam'r of the St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State of the state | Sugaran al hat the Same                 |                            |
| and the states of the state of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | والمحاصية وبالتبليب فيتلعه إرباله وتحاج | in alter sin the second pr |

Effective 08.01.97

## Fill-in Form 32

## Eight-port Valve / Peristaltic Pump 1VS Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Flow Rate<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow rate<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      | •        |
| Flow Rate<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| 150 of 204                           | Revi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ision 02.00                             | Effective | 08.01.97      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|---------------|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |               |
| the second state as the second state | The state of the second st | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |           | Art Sweet and |

22

A CONTRACTOR OF A CONTRACTOR OF

Cardines de Million de la

,

#### Fill-in Form 33

## Eight-port Valve / Peristaltic Pump 1VS Cross-Contamination Test Results Procedure III)

|                                       | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|---------------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 4          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6          |                             |          |                           |          |
| · · · · · · · · · · · · · · · · · · · | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7          |                             |          |                           |          |
| •                                     | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8          |                             |          |                           |          |
|                                       | Passed                      |          | Failed                    |          |



## Performance Verification of Multibath Sampling System

#### Scope

The following procedure describes how to carry out the verification procedure on the multibath sampling system (order number G1129A or G1130A) of the HP 8453 UV-visible spectroscopy system.

#### Frequency

Follow appropriate procedure:

- when you first install your dissolution testing sampling system,
- on a regular base at intervals of a minimum of 6 months,
- if you change or exchange any soft- or hardware of your dissolution testing sampling System.

#### Instrumentation and Software

This SOP applies to a HP 8453 UV-visible dissolution testing system comprising a HP 8453 spectrophotometer, a multibath sampling system (order number G1129A or G1130A), general purpose software for HP ChemStation (order number G1115AA) and dissolution testing software for HP ChemStation (order number G1118AA).

#### Requirements

Different tests have different environmental temperature conditions according to the various pharmacopeias. An environmental temperature range between 20–21  $^{\circ}$ C meets all specifications on which the test in this manual are based.

To perform this SOP you will require:

00/PV Standards (1), (2)

• OQ/PV Standards (1) and (2), part numbers 5063-6503 and 5063-6521 respectively.

MCT adjustment tool

600 ml distilled water and 200 ml caffeine/water sample for each bath

- MCT adjustment tool part number 89075-23800
- 3 beakers filled with approximately 200 ml of distilled water, HPLC grade, for each bath
- 2 beakers filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml) for each bath. Another sample may be substituted which absorbs at the analytical wavelength of your specific analysis. This sample should have an absorbance of approximately 1 AU.

Dissolution Testing System Performance Verification

Preparing the Multicell Transport of the Multibath Sampling System for the Test

|                                                | Preparing the Multicell Transport of the<br>Multibath Sampling System for the Test                                                                                                                                                    |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •<br>•                                         | The chapter describes the different steps for preparing the multibath sampling system (order number G1129A or G1130A) for the performance verification.                                                                               |
|                                                | Preparing the Multibath Dissolution Testing System                                                                                                                                                                                    |
| Disconnect bath and<br>remove probes from bath | 1                                                                                                                                                                                                                                     |
| 1                                              | To avoid any problems coming from the dissolution bath itself, unplug the communication cable connecting the bath with the PC.                                                                                                        |
| 2                                              | Remove the probes from the dissolution baths.                                                                                                                                                                                         |
| NOTE                                           | The performance verification test is only applicable when HP probes<br>(dissolution probe kit, part number 5062-8537) are in use. Exchange any<br>non-HP probes against those coming with the dissolution testing sampling<br>system. |
| Renew probe filters                            |                                                                                                                                                                                                                                       |
| 3                                              | Replace all probe filters (part number 5181-1246) with new ones.                                                                                                                                                                      |

Renew pump tubings

4 Replace all pump tubings with new ones (pump tubing 2.06 mm id, part number 5041-2166).

## Cleaning Flow Cells and Tubings of multibath Dissolution Testing System

Apply the following steps every time before you do a verification to make sure your flow cell is clean and does not trap any air bubbles.

|                                                                              | Dissolution Testing System Performance Verification<br>Preparing the Multicell Transport of the Multibath Sampling System for the Test                                                                                                |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Draw 50 ml of cell<br>passivating and<br>cleaning fluid through<br>flow cell |                                                                                                                                                                                                                                       |
| 1                                                                            | Prepare a minimum of 50 ml of a solution of 5% cell passivating and cleaning fluid (part number 5062-8529) in water for each cell.                                                                                                    |
| 2                                                                            | Place the probe of the selected channel (with the filter) into the beaker with<br>the 5% cell passivating and cleaning fluid and pump the 50 ml of cell<br>passivating and cleaning fluid through each flow cell.                     |
| 3                                                                            | Repeat step 1 and 2 for each channel of each bath.                                                                                                                                                                                    |
| NOTE                                                                         | You may observe a high amount of air coming through the flow cell, because<br>the solution contains a detergent.                                                                                                                      |
| Draw 100 ml of water<br>through flow cell                                    |                                                                                                                                                                                                                                       |
| 4                                                                            | Place the probe (with the filter) into a beaker with distilled water and draw 100 ml of water through each flow cell.                                                                                                                 |
| 5                                                                            | Repeat step 4 for each channel of each bath.                                                                                                                                                                                          |
| NOTE                                                                         | Before proceeding with the performance verification, every channel has to be filled with distilled water.                                                                                                                             |
|                                                                              | Preparing the Spectrophotometer, Multicell Transport,<br>Eight-port Valve and Peristaltic Pump 1VS                                                                                                                                    |
| NOTE                                                                         | The verification of the individual hardware components has to be carried out<br>during an installation of a multicell transport sampling system, or a<br>change/repair of one of the hardware components, or at least every 6 months. |
| NOTE                                                                         | For an existing and unchanged system, which is checked on a daily or weekly basis, begin the OQ/PV with "Procedure I" on page 156.                                                                                                    |

State State of the State of State of State

1

0.00

τų.

Dissolution Testing System Performance Verification Preparing the Multicell Transport of the Multibath Sampling System for the Test

Performance verification of the spectrophotometer and the multicell transport Prior to the performance verification of the multibath Sampling System, the performance of the HP 8453 spectrophotometer and the multicell transport have to be verified.

Refer to Chapter 2 "Spectrophotometer Performance Verification" for doing a spectrophotometer performance verification.

NOTE

The following procedure has to be carried out for each of the valve systems in use.

## **Procedure I**

- 1 The eight-port valve and peristaltic pump 1VS system should be properly installed as described in the manual.
- 2 Switch on the HP 8453 spectrophotometer and allow it to warm up for at least 20 minutes before making any measurements.
- 8 Start the HP ChemStation software.
- 4 Select the Verification and Diagnostics mode using the tool bar Mode section (or use the Mode menu).
- **5** Select the Flow Test task in the graphical user interface (or use the Task menu).
- 6 Set the wavelength for your test sample and the desired level of purity using the Setup button in the Flow Test window of the graphical user interface. The default values are the following:

Wavelength: 273 nm Percent: 99.5%

- 7 Select Online Valve System in the sampling system drop down box.
- 8 Set the parameters for operation of the pump by selecting Setup and Parameter in the graphical interface (or use the Instrument menu, Setup Sampling System. Parameter) and entering the following:

Pump time: 47 s

(fixed, depending on method loaded previously in dissolution module) Pump Direction: CW Dissolution Testing System Performance Verification

Preparing the Multicell Transport of the Multibath Sampling System for the Test

# **NOTE**The pump time is fixed to 47 seconds whenever a cycle time of 7.5 minutes has<br/>been chosen. For a cycle time of 5 minutes, the pump time is 29 seconds,<br/>whereas for a cycle time of 10 minutes you will get a pump time of 58 seconds.

- **9** Select the Channel you want to test in the Flow Test window of the graphical user interface.
- 10 Put the end of the probe of the channel you want to test into the reservoir containing the solvent.
- 11 Switch on the pump by clicking on the pump icon in the instrument panel of the graphical user interface and flush the system for approximately twice as long as the pump time you set. Switch off the pump by clicking on the pump icon.
- 12 Make a Blank measurement.
- 13 Put the end of the probe of the channel you want to test into the reservoir containing the test sample and start the test using the Run button in the Flow Test window. The test will take 50% longer than the pump time you have entered. You should get a graphic display of the absorbance versus time trace and a display of the pump time in seconds required for every channel to achieve the entered % purity.
- 14 Repeat the test for each of the channels.

## Acceptance I

Optimal pump time has been achieved, when the flow test indicates that you get consecutive results within 10% or 1 second, whichever is greater. Use Fill-in Form 37 on page 166 to document your results. If the test fails, refer to "Troubleshooting I" on page 157.

## **Troubleshooting I**

If good results cannot be obtained:

- Check if there is a bubble in the flow cell, if yes, gentle tapping of the cell will help to dislodge it.
- Check the flow rate of your pump and replace the pump tubing if necessary.

Dissolution Testing System Performance Verification

Proparing the Multicell Transport of the Multibath Sampling System for the Test

- Check for air being sucked in at one of the fittings.
- Check rate of your pump and replace the pump tubing if necessary.

# Performance Verification Procedures for Multibath Sampling System

#### NOTE

The procedures described in the following have to be carried out for each of the baths, in order to achieve a complete verification of the multibath system.

## **Procedure II**

- 1 If the HP 8453 spectrophotometer is not already turned on, switch the spectrophotometer on.
- 2 Start the HP ChemStation.
- **3** Select Verification and Diagnostics from the Mode menu or tool bar.

#### Select Dissolution Test and Multibath as sampling system

- 4 Select Dissolution Test in the Task drop down box of the graphical user interface or by using the Task menu.
- 5 In the Sampling system drop down box choose Multibath.
- 6 Press Setup and Parameter for checking the settings of the pump. The default settings are:

## Set pump parameters Pump time: 47 s (fixed, depending on method loaded previously in dissolution module) Pump Direction: CW

#### NOTE

The pump time is fixed to 47 seconds whenever a cycle time of 7.5 minutes has been chosen. For a cycle time of 5 minutes, the pump time is 29 seconds, whereas for a cycle time of 10 minutes you will get a pump time of 58 seconds.

Put probe in distilled water

- 7 Put probe 1 into a beaker filled with 200 ml of distilled water and select the channel in the graphical user interface accordingly.
- 8 Put return of probe 1 into a beaker to measure the amount of water pumped through the flow cell.
- 9 In the graphical user interface of the sampling system press the *Flow Rate*-button and select the bath to verify.
- 10 Set the parameters of the flow rate test by entering the following:

Set flow rate values

Duration: 2 min Direction: CW Limits: 6 ml/min, +/- 10%

Start flow rate measurement and measure the amount of liquid pumped through each channel

- 11 Start the flow rate test by pressing the OK-button.
- 12 Measure the volume you collected in the beaker and enter it, in units of ml, into the edit box coming up at the end of the flow rate test.
- 13 Check in the test result table coming up, if the test is passed.
- 14 Repeat steps 7 through 13 for each channel of the valve and each bath.

## Acceptance II

The calculated flow rate must be within the limits specified. This is indicated by passed in the *result* column of the test result table. Use Fill-in Form 38 on page 167 to document your results. If the test fails, refer to "Troubleshooting  $\Pi$ " on page 160.

## **Troubleshooting II**

• Check if cells and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as

described under.

- Check if all pump tubings, filter tips have been renewed and that the tubing clamps are closed.
- Depending on whether the pumped volumes are to high or to low, lower or raise the pump speed.

## **Procedure III**

1 Press the Cross Contamination-button in the graphical user interface. Set the parameters of the cross contamination test by entering the following:

Wavelength: 273 nm Minimum limit: 99.5% Maximum limit: 0.5%

273 nm is set-up as default wavelength when the caffeine sample (part number 5063-6524) is used for the test and the path length of the cell 10 mm. For 1 mm path length cells use 205 nm as default wavelength.

- 2 Press OK and select the bath to verify by activating the according radio button accordingly.
- 3 Start the cross contamination test by pressing the OK-button.
- 4 Put probe 1 into a beaker filled with distilled water or Blank medium. Press the OK-button.
- 5 Put probe 1 into a beaker filled with a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml) or the Sample medium. Press the OK-button.

NOTE

NOTE

Ensure having chosen a wavelength where your sample shows an absorbance of approximately 1 AU.

Put probes 1,3,5,7 into the blank

1 Put probes 1, 3, 5 and 7 into a beaker filled with approximately 200 ml of distilled water (HPLC grade), or your Blank medium.

Put probes 2,4,6,8 into the sample

2 Put probes 2, 4, 6 and 8 into a beaker filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml), or your Sample medium, and press OK.

Put probes 2,4,6,8 into the blank

8 Put probes 2, 4, 6 and 8 into a beaker filled with approximately 200 ml of distilled water (HPLC grade), or your Blank medium.

Put probes 1,3,5,7 into the sample

4 Put probes 1, 3, 5 and 7 into a beaker filled with approximately 200 ml of a mixture of caffeine/distilled water, HPLC grade (part number 5063-6524 for 50 ml), or your Sample medium, and press OK.

## Acceptance III

For each of the channels the table should show *passed* in the result column. Use Fill-in Form 39 on page 168 to document your results. Whenever one of the channels failed the test, refer to "Troubleshooting III" on page 162.

## **Troubleshooting III**

- Check if the cell and tubings are free of bubbles. When there is a bubble in the flow cell, tap the flow cell gently on the table to remove the bubble. Sticking bubbles can only be removed by cleaning the flow cell as described under .
- Check if all pump tubings, filter tips have been renewed and that the tubing clamps are closed.
- Go back to Flow Task test and check the pump time of the peristaltic pump. Depending on whether the pump time is to high or to low, lower or

raise the pump time.

• Check if the valve fittings tightened. To ensure proper installation of the fittings, tighten them gently with the plastic wrench shipped with the valve sampling system.

# Multibath Sampling System OQ/PV **Attachment Forms—Bath 1** Use Fill-in Form 34, Fill-in Form 35 and Fill-in Form 36 to record the hardware for which the performance verification was carried out. Fill-in Form 34 **Peristaltic Pump 1VS Description** This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below. G1103-60004 / G1103-60006 HEWLETT. Model # DACKAD Manufacturer Pump Serial # Asset # System #



164 of 204

| Fill-in | Form | 35 |
|---------|------|----|
|---------|------|----|

#### **Eight-port Valve Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89079A Model #

#### Manufacturer

| /alve Serial # | Asset # | System | l |
|----------------|---------|--------|---|
|                |         |        |   |
|                | · · · · |        |   |

#### Fill-in Form 36

#### Multicell Transport Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89075C/D or G1120A

Model #

Manufacturer

| MCT Serial # | Asset # | System # |  |
|--------------|---------|----------|--|
|              |         |          |  |
|              |         |          |  |



Effective 08.01.97

Use Fill-in Form 38, Fill-in Form 38 and Fill-in Form 39 to record the results of the multibath system performance verification.

divestination fait

Fill-in Form 37

Eight-port Valve / Peristaltic Pump 1VS Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| 盟  |  |
|----|--|
| 18 |  |
| 83 |  |
| 12 |  |
|    |  |
| -  |  |

Effective 08.01.97

**Revision 02.00** 

166 of 204
Fill-in Form 38

# Eight-port Valve / Peristaltic Pump 1VS Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Flow Rate<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |



Effective 08.01.97

# Fill-in Form 39

. **ا**ړ: ۲

and the second second

# Eight-port Valve / Peristaltic Pump 1VS Cross-Contamination Test Results

dial dial dial

|                              | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 4 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7 |                             |          |                           |          |
| • • •                        | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |



168 of 204

|                | Multibath S<br>Attachment                                                                                                           | ampling System<br>Forms—Bath 2       | OQ/PV                            |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|--|--|--|--|--|
|                | Use Fill-in Form 40, Fill-in Form 41 and Fill-in Form 42 to reconnected hardware for which the performance verification was carried |                                      |                                  |  |  |  |  |  |
| ill-in Form 40 | Peristaltic Pump 1V                                                                                                                 | S Description                        |                                  |  |  |  |  |  |
|                | This chapter describes system component be                                                                                          | the OQ/PV tests to be perfor<br>low. | med for the HP 8453 spectroscopy |  |  |  |  |  |
|                |                                                                                                                                     |                                      | G1103-60004 / G1103-6000         |  |  |  |  |  |
|                | (hp                                                                                                                                 | PACKARD                              |                                  |  |  |  |  |  |
|                | Manufacturer                                                                                                                        |                                      |                                  |  |  |  |  |  |
|                |                                                                                                                                     |                                      |                                  |  |  |  |  |  |
|                | Pump Serial #                                                                                                                       | Asset #                              | System #                         |  |  |  |  |  |

| Superior defects to the second second | a afar an |  |  |
|---------------------------------------|-----------------------------------------------|--|--|

Effective 08.01.97

Fill-in Form 41

# **Eight-port Valve Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89079A Model #

### Manufacturer

| /alve Serial # | Asset # | System # |  |
|----------------|---------|----------|--|

### Fill-in Form 42

### Multicell Transport Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



Manufacturer

| MCT Serial # | Asset | ŧ | System # |  |
|--------------|-------|---|----------|--|



a la construction de la construction

Use Fill-in Form 43, Fill-in Form 44 and Fill-in Form 45 to record the results of the multibath system performance verification.

423

#### Fill-in Form 43

Eight-port Valve / Peristaltic Pump 1VS Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      | •        |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| 6          |      | -1 |       |       |      |      |        |      |       |     |      |         |      |         | 1.00  |        |             |       |      |      |      | . s. j | ್ಷ   |
|------------|------|----|-------|-------|------|------|--------|------|-------|-----|------|---------|------|---------|-------|--------|-------------|-------|------|------|------|--------|------|
| 12         | <br> |    | <br>  | <br>  | <br> | <br> | ,      | <br> | <br>  |     |      |         |      |         |       |        | <br>        |       |      |      | <br> |        | B    |
|            |      |    |       |       |      |      | 1 e    |      |       |     |      |         |      |         |       |        |             |       |      |      |      |        | - 88 |
| $\cdot, j$ |      |    |       |       |      |      |        |      |       | 1.5 |      |         |      |         |       |        |             |       |      |      |      |        | - 12 |
| 1          | <br> |    | <br>  | <br>_ | <br> | <br> |        | <br> | <br>- |     |      |         |      | 22.00   |       | a. 101 |             |       | <br> | <br> | <br> |        | - 65 |
| ١.         |      |    | é , 1 |       |      |      | n (SQ) |      |       |     |      | . 30.00 | 46.5 |         | 1.1   |        | - k         |       |      |      |      |        | - 10 |
|            | <br> |    | <br>  | <br>  |      | <br> |        | <br> | <br>  |     | <br> |         |      | 1.39.40 | din A |        | <br><u></u> | <br>· | ·    | <br> | <br> |        |      |

Effective 08.01.97

- shi an

# Fill-in Form 44

49 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9 - **1**9

# Eight-port Valve / Peristaltic Pump 1VS Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |  |  |
|------------------------|-----------|-------------|-------------|----------|--|--|
| Flow Rate<br>Channel 1 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 2 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 3 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 4 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 5 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 6 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 7 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |
| Flow Rate<br>Channel 8 |           |             |             |          |  |  |
|                        | Passed    |             | Failed      |          |  |  |

| 179 04 904 | Portation 02.00 | Effective 08 01 07 |
|------------|-----------------|--------------------|
|            |                 |                    |
|            |                 |                    |
|            |                 |                    |
|            |                 |                    |

172 of 204

Fill-in Form 45

# Eight-port Valve / Peristaltic Pump 1VS Cross-Contamination Test Results

|                              | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 4 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |



**Dissolution Testing System Performance Verification** Multibath Sampling System OQ/PV Attachment Forms-Bath 3 Multibath Sampling System OQ/PV **Attachment Forms—Bath 3** Use Fill-in Form 46, Fill-in Form 47 and Fill-in Form 48 to record the hardware for which the performance verification was carried out. Fill-in Form 46 Peristaltic Pump 1VS Description This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below. G1103-60004 / G1103-60006 HEWLETT Model # PACKARE Manufacturer Pump Serial # Asset # System #



Fill-in Form 47

### Eight-port Valve Description

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89079A Model #

Manufacturer

| /alve Serial # | Asset # | System # |  |
|----------------|---------|----------|--|

Fill-in Form 48

# **Multicell Transport Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89075C/D or G1120A

Model #

Manufacturer

|              | <u> </u> | <u></u>  |  |
|--------------|----------|----------|--|
|              |          |          |  |
| MCT Serial # | Asset #  | System # |  |



Effective 08.01.97

Use Fill-in Form 49, Fill-in Form 50 and Fill-in Form 51 to record the results of the multibath system performance verification.

#### Fill-in Form 49

Eight-port Valve / Peristeltic Pump 1VS Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |



176 of 204

hin a start of the

# Fill-in Form 50

# Eight-port Valve / Peristaltic Pump 1VS Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Flow Rate<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 3 |           |             |             | N        |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |



### Fill-In Form 51

# Eight-port Valve / Peristaltic Pump 1VS Cross-Contamination Test Results

|                              | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 4 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |



**Dissolution Testing System Performance Verification** Multibath Sampling System OQ/PV Attachment Forms-Bath 4 Multibath Sampling System OQ/PV **Attachment Forms—Bath 4** Use Fill-in Form 52, Fill-in Form 53 and Fill-in Form 54 to record the hardware for which the performance verification was carried out. Fill-in Form 52 **Peristaltic Pump 1VS Description** This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below. G1103-60004 / G1103-60006 HEWLETT. PACKARD Model # Manufacturer Pump Serial # Asset # System #



Fill-in Form 53

### **Eight-port Valve Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89079A Model #

#### Manufacturer

| /alve Serial # | Asset # | System # |  |
|----------------|---------|----------|--|

### Fill-in Form 54

## **Multicell Transport Description**

This chapter describes the OQ/PV tests to be performed for the HP 8453 spectroscopy system component below.



89075C/D or G1120A

Model #

Manufacturer

|              | , ,     |          |  |
|--------------|---------|----------|--|
|              |         |          |  |
| MCT Serial # | Asset # | System # |  |



Use Fill-in Form 55, Fill-in Form 56 and Fill-in Form 57 to record the results of the multibath system performance verification.

### Fill-in Form 55

and to

Eight-port Valve / Peristaltic Pump 1VS Flow Test Results (Procedure I)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Pump Time<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Pump Time<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |



Effective 08.01.97

# Fill-in Form 56

# Eight-port Valve / Peristaltic Pump 1VS Flow Rate Test Results (Procedure II)

|                        | Set Point | Upper Limit | Lower Limit | Measured |
|------------------------|-----------|-------------|-------------|----------|
| Flow Rate<br>Channel 1 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 2 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 3 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 4 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 5 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 6 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 7 |           |             |             |          |
|                        | Passed    |             | Failed      |          |
| Flow Rate<br>Channel 8 |           |             |             |          |
|                        | Passed    |             | Failed      |          |

| 182 of 204 | Revision 02.00 | Effective 08.01.97 |
|------------|----------------|--------------------|

Fill-in Form 57

# Eight-port Valve / Peristaltic Pump 1VS Cross-Contamination Test Results

|                              | Min. for 100%<br>Absorbance | Measured | Max. for 0%<br>Absorbance | Measured |
|------------------------------|-----------------------------|----------|---------------------------|----------|
| Relative Abs. %<br>Channel 1 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 2 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 3 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 4 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 5 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 6 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 7 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |
| Relative Abs. %<br>Channel 8 |                             |          |                           |          |
|                              | Passed                      |          | Failed                    |          |



# Performance Verification of the Dissolution Testing Software

This section guides you through the performance verification of the dissolution testing software.

Dissolution Testing System Performance Verification Dissolution Testing UV-Visible ChemStation Software Revalidation

# Dissolution Testing UV-Visible ChemStation Software Revalidation

### Scope

The following procedure describes how to validate dissolution testing software on a HP ChemStation of a HP 8453 UV-visible spectroscopy system.

## Frequency

Follow appropriate procedure if:

- you have installed or reinstalled your software,
- you have upgraded your software to a new revision, or
- you have had a software or system crash.

### Instrumentation and Software

- This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer, general scanning software for HP ChemStation (order number G1115AA) and dissolution testing software for HP ChemStation (order number G1118AA).
- The CD-ROM including the method files you need, is delivered with the general scanning software.
- A printer connected to the system.

# Procedure

- 1 Start Windows.
- 2 Start the HP ChemStation software by clicking on the Instrument # Online icon of the HP ChemStations group, where # is the number of the instrument you chose in the configuration process.
- 3 Select Dissolution Testing Mode from the Mode drop-down box.
- 4 Insert the CD-ROM in your CD-ROM drive.

185 of 204

# Dissolution Testing System Performance Verification Dissolution Testing UV-Visible ChemStation Software Revalidation

5 Load the sample data from the disvalid.sd data file of the support/uv/sops/data subdirectory using the Files menu.

### Single-Bath Dissolution Testing Software

- 6 Load the disvalid.m method file from the support\uv\sops\8453 subdirectory of the CD-ROM using the Files Menu or the Load Method icon in the tool bar.
- 7 Print a report using the File menu or the printer icon in the tool bar.
- 8 Compare results of the report with the values in "Exhibit A: Validation Results for Dissolution Testing Software" on page 187. With the exception of operator name and report date and time they should be identical.

#### **Multibath Dissolution Testing Software**

- 9 Select Multibath Dissolution Testing form the Mode drop-down box.
- 10 Load the dimvalid.m method file from the support/uv/sops/8453 subdirectory of the CD-ROM using the Files Menu or the Load Method icon in the tool bar.
- 11 Print a report using the File menu or the printer icon in the tool bar.
- 12 Compare results of the report with the values in "Exhibit A: Validation Results for Dissolution Testing Software" on page 187. With the exception of operator name and report date and time they should be identical.

### Acceptance

Check that the results in the printed reports are identical with the values in "Exhibit A: Validation Results for Dissolution Testing Software" on page 187 of this SOP. Use the fill-in forms at the end of this chapter to document your results. If the test fails, refer to "Troubleshooting" on page 186.

## Troubleshooting

If the results are not identical reinstall the software and repeat the revalidation procedure. If the results are still not identical, call Hewlett-Packard.

Dissolution Testing System Performance Verification Dissolution Testing UV-Visible ChemStation Software Revalidation

# Exhibit A: Validation Results for Dissolution Testing Software

| Individual | Tablet | Weights | Vessel | Weight |
|------------|--------|---------|--------|--------|
|            |        | (mg)    |        |        |
|            |        |         | 1.00   | 100.0  |
|            |        |         | 2.00   | 100.0  |
|            |        |         | 3.00   | 100.0  |
|            |        |         | 4.00   | 100.0  |
|            |        |         | 5.00   | 100.0  |
|            |        |         | 6.00   | 100.0  |
|            |        |         |        |        |

| Weight | of 100%  | released  | Component Name | Weight (mg) |
|--------|----------|-----------|----------------|-------------|
|        |          |           |                |             |
|        |          |           | Comp           | 900.00      |
| Data A | nalveie. | (routine) |                |             |

Data Analysis: (routine)

| Used Wavelength:       | 360 nm     |
|------------------------|------------|
| Process Spectrum as:   | Absorbance |
| Background correction: | none       |
| Use Calibration:       | Yes        |
| Analyte name :         | Comp       |
| Calibration curve :    | Linear     |
| Units :                | mg/mL      |
| Do Spectral Match:     | No         |

Calibration:

| Co    | qmp    |        | St      | andard |       | Val   | u <b>e</b> 1 | Predicte       | d E  | rror(%) |
|-------|--------|--------|---------|--------|-------|-------|--------------|----------------|------|---------|
|       |        | Sta    | ndard   |        |       | 1.000 | 00           | 1.0000         | 0    | 0.0     |
| Disso | lution | Tabl   | e: Co   | qm     |       |       |              |                |      |         |
| Time  | V 1    | v      | 2 V 3   | V 4    | V 5   | V 6   | Averaç       | ge Std         | .Dev | *       |
| 0.0   | 0.0    | -0.    | 0 0.0   | -0.0   | -0.0  | -0.0  | -0.          | . 0            | 0.0  | -118.3  |
| 15.0  | 95.2   | 93.    | 5 94.1  | 93.8   | 95.5  | 92.2  | 94.          | . 0            | 1.2  | 1.3     |
| 30.0  | 102.1  | 99.    | 6 99.4  | 99.5   | 100.7 | 100.5 | 100.         | . 3            | 1.0  | 1.0     |
| Quali | ty Con | trol : | Require | ments: | Time  | e Mir | imum N       | <b>Aaximum</b> | Res  | ult     |
|       |        |        |         |        | 30.0  | )     | 85.0         | 115.0          | pae  | sed     |

artwi<mark>kt is z</mark>

Dissolution Testing System Performance Verification Dissolution Testing Software OQ/PV Attachment Forms

| ill-in Form 58 | Software Revision De                               | scription                                                    |                                               |  |  |  |
|----------------|----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--|--|--|
|                | This chapter describes the revision below (running | ne OQ/PV tests to be perform<br>under the given operating sy | ned using the HP ChemStation softwar<br>stem) |  |  |  |
|                |                                                    | PACKARD                                                      |                                               |  |  |  |
|                | (I)                                                |                                                              |                                               |  |  |  |
|                | Manufacturer                                       | Manufacturer                                                 |                                               |  |  |  |
|                | Dissolution testing softv                          | Dissolution testing software                                 |                                               |  |  |  |
|                | HP ChemStation softwar                             | HP ChemStation software module                               |                                               |  |  |  |
|                | License #                                          | Revision #                                                   |                                               |  |  |  |
|                | Operating System                                   |                                                              | <u> </u>                                      |  |  |  |
|                | Revision #                                         | ]                                                            |                                               |  |  |  |
|                |                                                    |                                                              |                                               |  |  |  |
|                |                                                    |                                                              |                                               |  |  |  |
|                |                                                    |                                                              |                                               |  |  |  |

|  | D -1-1 00 00 |  |
|--|--------------|--|
|  |              |  |

Dissolution Testing System Performance Verification Dissolution Testing Software OQ/PV Attachment Forms

Fill-in Form 59

# **Dissolution Testing Software**

| Type of Test                        | Criteria               | <b>Report OK?</b> |
|-------------------------------------|------------------------|-------------------|
| Single-bath dissolution test bath 1 | According to Exhibit A |                   |
| Multibath dissolution test bath 1   | According to Exhibit A |                   |
| Multibath dissolution test bath 2   | According to Exhibit A |                   |
| Multibath dissolution test bath 3   | According to Exhibit A |                   |
| Multibath dissolution test bath 4   | According to Exhibit A |                   |
| Passed                              | Failed                 |                   |



Effective 08.01.97

# Performance Verification of the DDE Interface for Bath Drivers

This section guides through the way a performance verification of your DDE interface has to be carried out, in order to ensure a correct communication with your bath driver.

Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software

ALCORE A SALESS AND

# Revalidation of the DDE Interface for Dissolution Testing Software

### Scope

The following procedure describes how to validate the DDE interface of dissolution testing software on a HP ChemStation of a HP 8453 UV-visible spectroscopy system.

## Frequency

Follow appropriate procedure if:

- you have installed or reinstalled your software,
- you have upgraded your software to a new revision,
- you have changed your bath driver, or
- you have had a software or system crash.

# Instrumentation and Software

- This SOP applies to a HP 8453 UV-visible spectroscopy system comprising a HP 8453 spectrophotometer, general scanning software for HP ChemStation (order number G1115AA) and dissolution testing software for HP ChemStation (order number G1118AA).
- The CD-ROM including the method files you need, is delivered with the general scanning software.
- A printer connected to the system.

### Procedure

- 1 Start Windows.
- **2** Insert the HP ChemStation CD-ROM in your CD-ROM drive.
- **3** Start Windows Explorer.

# Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software

- 4 Install the dummy bath driver from the CD-ROM by clicking on setup.exe in the directory support\uv\sops\bathdrv into the directory c:\hpchem\bathdrv. This directory will be created by the installation process.
- **5** Start the HP ChemStation software by clicking on the Instrument # Online icon of the HP ChemStations group, where # is the number of the instrument you chose in the configuration process.

### Single-Bath Dissolution Testing Software

- 6 Select Dissolution Testing Mode from the Mode drop-down box.
- 7 Select New Method from the File menu.
- 8 Configure the bath driver by selecting Bath from the Config menu and specify in the Enter command line of bath driver dialog box the command:

c:\hpchem\bathdrv\dummy16.exe

Click OK to close the dialog box.

- **9** To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Dissolution Testing Mode from the Mode drop-down box.
- 10 Select Edit Product Info & Bath Param in the Method menu. Click on the tab for Option & Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.
- 11 Select Dissolution Bath Status from the Instrument menu. Position the window of dissolution bath driver that way to the bottom of the screen, that you can see the value field of the bath for current temperature (default 37 °C), current stirrer speed (default 075), current pH (default 7.00) and current volume (default 900).
- 12 Select Edit Product Info & Bath Param in the Method menu. Click on the tab for Bath and modify the values as follows:

Temperature 35.0 °C pH 9.0 Volume 800 ml Stirrer speed 100 rpm

18 Close the dialog box with OK and verify that the Dummy Bath Status screen reflects this change in parameters.

| NOTE       The fields for the parameters of the individual vessels are for future enhancements.         14       Click on the button Blank to measure a blank spectrum.         15       Click on the button Dissolution Run to start a dissolution run. In case the Consistency check results screen pops up, click on OK to continue.         16       Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.         NOTE       The volume is not read back from the dummy bath driver.         17       Close the dialog box with Cancel to abort the dissolution run.         Multibath Dissolution Testing Software       18         18       Select Multibath Dissolution Testing Mode from the Mode drop-down box         19       Select New Method from the Flle menu.         20       Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:         c: \hpchem\bathdrv\dummy16.exe       for all four baths         Click 'OK' to close the dialog box.       21         21       To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.         22       Select Spectrophotometer Reference from the Measure menu to measure a reference.         23       Click on the button Bath 1 to switch to bath 1.         24       Select Edit Product Info & B                                   |      | Dissolution Testing System Performance Verification                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE       The fields for the parameters of the individual vessels are for future enhancements.         14       Click on the button Blank to measure a blank spectrum.         15       Click on the button Dissolution Run to start a dissolution run. In case the Consistency check results screen pops up, click on OK to continue.         16       Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.         NOTE       The volume is not read back from the dummy bath driver.         17       Close the dialog box with Cancel to abort the dissolution run.         Multibath Dissolution Testing Software       18         18       Select Multibath Dissolution Testing Mode from the Mode drop-down box         19       Select New Method from the File menu.         20       Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:         c: \hpchem\bathdrv\dummy16.exe       for all four baths         Click 'OK' to close the dialog box.       21         21       To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.         22       Select Spectrophotometer Reference from the Measure menu to measure a reference.         23       Click on the button Bath 1 to switch to bath 1.         24       Select Edit Product Info & B                                   |      | Revalidation of the DDE Interface for Dissolution Testing Software                                                                                                                                                                    |
| <ul> <li>14 Click on the button Blank to measure a blank spectrum.</li> <li>15 Click on the button Dissolution Run to start a dissolution run. In case the Consistency check results screen pops up, click on OK to continue.</li> <li>16 Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.</li> <li><b>NOTE</b> The volume is not read back from the dummy bath driver:</li> <li>17 Close the dialog box with Cancel to abort the dissolution run. Multibath Dissolution Testing Software</li> <li>18 Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>19 Select New Method from the Fle menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul> | NOTE | The fields for the parameters of the individual vessels are for future<br>enhancements.                                                                                                                                               |
| <ul> <li>15 Click on the button Dissolution Run to start a dissolution run. In case the Consistency check results screen pops up, click on OK to continue.</li> <li>16 Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.</li> <li>17 Close the dialog box with Cancel to abort the dissolution run. Multibath Dissolution Testing Software</li> <li>18 Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>19 Select New Method from the FIle menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c: \hpchem\bathdriv&lt;\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                          | 14   | Click on the button Blank to measure a blank spectrum.                                                                                                                                                                                |
| <ul> <li>16 Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.</li> <li>17 The volume is not read back from the dummy bath driver.</li> <li>17 Close the dialog box with Cancel to abort the dissolution run.</li> <li>Multibath Dissolution Testing Software</li> <li>18 Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>19 Select New Method from the Fle menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c: \hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                              | 15   | Click on the button Dissolution Run to start a dissolution run. In case the Consistency check results screen pops up, click on OK to continue.                                                                                        |
| IDTE       The volume is not read back from the dummy bath driver.         17 Close the dialog box with Cancel to abort the dissolution run.         Multibath Dissolution Testing Software         18 Select Multibath Dissolution Testing Mode from the Mode drop-down box         19 Select New Method from the File menu.         20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:         c: \hpchem\bathdrv\dummy16.exe         for all four baths         Click 'OK' to close the dialog box.         21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.         22 Select Spectrophotometer Reference from the Measure menu to measure a reference.         23 Click on the button Bath 1 to switch to bath 1.         24 Select Edit Product Info & Bath Param in the Method menu. Click on the tab for Option & Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.                                                                                                                                                                                                                                                                                                                                                                                                                               | 16   | Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.                                                                                 |
| <ul> <li>17 Close the dialog box with Cancel to abort the dissolution run.</li> <li>Multibath Dissolution Testing Software</li> <li>18 Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>19 Select New Method from the File menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IOTE | The volume is not read back from the dummy bath driver.                                                                                                                                                                               |
| <ul> <li>Multibath Dissolution Testing Software</li> <li>Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>Select New Method from the File menu.</li> <li>Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command: <ul> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> </ul> </li> <li>To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box.</li> <li>Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>Click on the button Bath 1 to switch to bath 1.</li> <li>Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17   | Close the dialog box with Cancel to abort the dissolution run.                                                                                                                                                                        |
| <ul> <li>18 Select Multibath Dissolution Testing Mode from the Mode drop-down box</li> <li>19 Select New Method from the File menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Multibath Dissolution Testing Software                                                                                                                                                                                                |
| <ul> <li>19 Select New Method from the File menu.</li> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18   | Select Multibath Dissolution Testing Mode from the Mode drop-down box                                                                                                                                                                 |
| <ul> <li>20 Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:</li> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19   | Select New Method from the File menu.                                                                                                                                                                                                 |
| <ul> <li>c:\hpchem\bathdrv\dummy16.exe</li> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20   | Configure the bath driver by selecting Bath from the Config menu, select all four baths, and specify in the Enter command line of bath driver dialog box the command:                                                                 |
| <ul> <li>for all four baths</li> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | c:\hpchem\bathdrv\dummy16.exe                                                                                                                                                                                                         |
| <ul> <li>Click 'OK' to close the dialog box.</li> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | for all four baths                                                                                                                                                                                                                    |
| <ul> <li>21 To activate the bath driver a mode switch has to be done. Select Standard Mode from the Mode drop-down box. Select Multibath Dissolution Testing Mode from the Mode drop-down box.</li> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Click 'OK' to close the dialog box.                                                                                                                                                                                                   |
| <ul> <li>22 Select Spectrophotometer Reference from the Measure menu to measure a reference.</li> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21   | To activate the bath driver a mode switch has to be done. Select Standard<br>Mode from the Mode drop-down box. Select Multibath Dissolution Testing<br>Mode from the Mode drop-down box.                                              |
| <ul> <li>23 Click on the button Bath 1 to switch to bath 1.</li> <li>24 Select Edit Product Info &amp; Bath Param in the Method menu. Click on the tab for Option &amp; Info and activate the option Bath Parameter are controlled by ChemStation. Close the dialog box with OK to activate the option.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22   | Select Spectrophotometer Reference from the Measure menu to measure a reference.                                                                                                                                                      |
| 24 Select Edit Product Info & Bath Param in the Method menu. Click on the tab<br>for Option & Info and activate the option Bath Parameter are controlled by<br>ChemStation. Close the dialog box with OK to activate the option.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23   | Click on the button Bath 1 to switch to bath 1.                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24   | Select Edit Product Info & Bath P <b>aram in the Method menu. Click on the tab</b><br>for Option & Info and activate the option Bath Parameter are controlled by<br>ChemStation. Close the dialog box with OK to activate the option. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                                                       |

1.0

Effective 08.01.97

and the second states of the

Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software

- **25** Select Dissolution Bath Status from the Instrument menu. Position the window of dissolution bath driver that way to the bottom of the screen, that you can see the value field of the bath for current temperature (default 37 °C), current stirrer speed (default 075), current pH (default 7.00) and current volume (default 900).
- **26** Select Edit Product Info & Bath Param in the Method menu. Click on the tab for Bath and modify the values as follows:
  - Temperature 35.0 °C pH 9.0 Volume 800 ml Stirrer speed 100 rpm

NOTE

NOTE

- 27 Close the dialog box with OK and verify that the Dissolution Bath Status screen reflects this change in parameters.
- The fields for the parameters of the individual vessels are for future enhancements.
  - 28 Click on the button Blank to measure a blank spectrum.
  - 29 Click on the button Dissolution Run to start a dissolution run.
  - **30** Verify that the actual parameters for pH, temperature and stirrer speed, which are read back from the bath driver, are identical with the set values.
- The volume is not read back from the dummy bath driver.
  - **31** Close the dialog box with Cancel to abort the dissolution run.
  - **32** Repeat step 23 through step 31 for Bath 2 to Bath 4.

### Acceptance

Check that the values set in the method for the bath parameters pH, temperature and stirrer speed are identical with the values shown in the dissolution bath status screen. Check that the actual values for pH, temperature and stirrer speed are identical with the set values for the bath parameters in the dissolution run parameter screen then starting a dissolution run. Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software

# Troubleshooting

If the results are not identical reinstall the software and repeat the revalidation procedure. If the results are still not identical, call Hewlett-Packard.

**Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software OQ/PV Attachment Forms Revalidation of the DDE Interface for Dissolution Testing Software OQ/PV** Attachment Forms Fill-in Form 60 Software Revision Description This chapter describes the OQ/PV tests to be performed using the HP ChemStation software revision below (running under the given operating system). G1118AA EWLETT• Product # PACKARD Manufacturer Dissolution testing software HP ChemStation software module Revision # License # **Operating System** Revision #



196 of 204

Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software OQ/PV Attachment Forms

| Fill-in Form 61 | D      | issolution Testing         | y Software |                                              |            |
|-----------------|--------|----------------------------|------------|----------------------------------------------|------------|
| Parameter       | Method | Dissolution<br>Bath Status | Values OK? | Dissolution<br>Run Parameter<br>Actual Value | Values OK? |
| Temperature     | 35.0   |                            |            |                                              |            |
| рН              | 9.0    |                            |            |                                              |            |
| Stirrer speed   | 100    |                            |            |                                              |            |
|                 |        | Passed                     |            | Failed                                       |            |



Effective 08.01.97

197 of 204

Dissolution Testing System Performance Verification Revalidation of the DDE Interface for Dissolution Testing Software OQ/PV Attachment Forms





# **Parts and Materials**

8

# **Parts and Materials**

This chapter gives part numbers for all Hewlett Packard parts that are necessary to do the performance verification and it gives a list of sources for standards that cannot be obtained through Hewlett-Packard.
Parts and Materials Parts List

# **Parts List**

### Table 6

## **OQ/PV Kits and Chemicals**

| Description                                                                                                                                                                                                              | Part Number |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| OQ/PV standards (1) kit for UV-visible spectroscopy<br>(liquid standards in ampules) <sup>*</sup>                                                                                                                        | 5063-6503   |
| OQ/PV standards (2) kit for UV-visible spectroscopy (liquid standards in ampules, containing all standards with perchloric acid)**                                                                                       | 5063-6521   |
| OQ/PV hardware kit for UV-visible spectroscopy (including tubings, 2 flow cells, 2 syringes, 2 Luer-lock adapters, multicell transport adjustment tool, temperature sensor support, 3.5-inch flexible disk and handbook) | 5063-6523   |
| Caffein sample, 0.01 mg/ml, 50 ml solution                                                                                                                                                                               | 5063-6524   |

Table 7

### **Replacement Parts**

| Description                                                       | Part Number |
|-------------------------------------------------------------------|-------------|
| Flow cell, 11 × 3.5 mm aperture, 360 µl volume, 10 mm path length | 5061-3398   |
| OQ/PV Tubing kit                                                  | 5063-6522   |
| Cell passivating and cleaning fluid, 1000 ml                      | 5062-8529   |
| Multicell transport adjustment tool                               | 89075-23800 |
| Temperature sensor support                                        | 89090-84700 |

Parts and Materials Standards from External Sources

## **Standards from External Sources**

The following standards can be obtained from external sources. Use the information below for ordering.

#### Wavelength Accuracy

The NIST 2034 holmium oxide solution is available from:

U.S. Department of Commerce National Institute of Standards and Technology Standard Reference Materials Program Bldg. 202, Room 204 Gaithersburg MD 20899 USA Tel. (301) 975 6776

#### Photometric Accuracy

The NIST 930e standard is available from NIST, see above address.

#### Other Standards

All other standards can be prepared using the appropriate material recommended in the EP or ASTM procedures.

#### **Temperature Accuracy**

QuaT 100 handheld temperature measuring unit with a QuaT 340 temperature probe, available from:

Heraeus Sensors GmbH Reinhard-Heraeus Ring 23 63801 Kleinostheim Germany Tel. (+49) (6027) 503-0 Parts and Materials Names and Chemical Formulae of Hewlett-Packard Liquid Standards

# Names and Chemical Formulae of Hewlett-Packard Liquid Standards

#### Table 8

## Names and Chemical Formulae of Hewlett-Packard Liquid Standards

| Name                    | Chemical Formula                                               |
|-------------------------|----------------------------------------------------------------|
| OQ/PV Standards (1) Kit |                                                                |
| Potassium dichromate    | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                  |
| Sulfuric acid           | H <sub>2</sub> SO <sub>4</sub>                                 |
| Sodium nitrite          | NaNO <sub>2</sub>                                              |
| Sodium iodide           | Nal                                                            |
| Potassium chloride      | KCI                                                            |
| Toluene                 | C <sub>7</sub> H <sub>8</sub>                                  |
| Tolune / hexane         | C <sub>7</sub> H <sub>8</sub> / C <sub>6</sub> H <sub>14</sub> |
| 00/PV Standards (2) Kit |                                                                |
| Holmium oxide           | Ho <sub>2</sub> O <sub>3</sub>                                 |
| Perchloric acid         | HCIO <sub>4</sub>                                              |

## Parts and Materials

Names and Chemical Formulae of Hewlett-Packard Liquid Standards

204 of 204

Contraction of the second s

. . .

,

···



#### In This Book

This handbook is intended for the technical reader who needs an operating procedure for the performance verification of the instrument.

The handbook contains specifications of the instrument as well as procedures of performance verifications. These procedures are listed in great detail concerning handling of chemicals and cuvettes, because they are intended also for less experienced users. Following these procedures exactly is mandatory for the success of the performance verification. Part numbers and ordering information for parts from Hewlett-Packard and from other companies are given in a separate section.

For information about installation of the system including the spectrophotometer, computer and accessories, see the *Installing Your UV-Visible System* handbook.

Printed in U.S.A. 08/97 G1115-90006

